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Bivariate and multiple random variables extend the univariate case to capture joint behaviors, enabling
analysis of dependence (e.g., via correlation) and multivariate probabilities.

Definition 1 (Bivariate Discrete Random Variable). A bivariate discrete random variable is a pair (X,Y)
where X and Y are random variables defined on the same probability space (£, F, P). The joint behavior
of X and Y is described by their joint cumulative distribution function (CDF):

Fxy(z,y) =P(X <z,Y <y).
The joint PMF px y(x,y) provides the distribution over pairs of values, i.e.,
pxy(@,y) =PX ==zY =y).

Marginal PMFs are obtained by summing over one variable,

px(@) = pxy(z.y), py(y) = pxy(@,y).

Example 1. Consider tossing three fair coins. Let X denote the number of heads and Y denote the
number of tails. This can be visualized from the table below,

Outcomes ‘HHH HHT HTH HTT THH THT TTH TTT

X 3 2 2 1 2 1 1 0
Y 0 1 1 2 1 2 2 3
Probability | 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

The joint PMF pxy(x,y) is give by

1/8, if (z,y) € {(0,3),(3,0)}
pxy(z,y) =P(X =z,Y =y)=<3/8, if (z,y) € {(1,2),(2,1)}

0, otherwise.
The marginal PMF of X is given by

1/8, if z € {0,3}
px(@) = pxy(@y) ={3/8, ifeec{1,2}
Y 0, otherwise.




Similarly, the marginal PMF of Y is given by

1/8, ifye {0,3}
py(y) = pxy(w,y)=13/8, ifye{1,2}
* 0, otherwise.

Example 2. Consider rolling two fair dice. Let X and Y denote the outcomes on first and second
die respectively. Then (X, Y") is a bivariate random variable; the table below provides a detailed view.

X\Y 1 2 3 4 5 6

) (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
X=1,Y=1 | X=1,Y=2 | X=1,Y=3 | X=1,Y=4 | X=1,Y=5 | X=1, Y=6

) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
X=2,Y=1 | X=2,Y=2 | X=2,Y=3 | X=2,Y=4 | X=2,Y=5 | X=2, Y=6

. (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
X=3,Y=1 | X=3,Y=2 | X=3,Y=3 | X=3,Y=4 | X=3,Y=5 | X=3, Y=6

A (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
X=4,Y=1 | X=4,Y=2 | X=4,Y=3 | X=4,Y=4 | X=4,Y=5 | X=4, Y=6

- (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
X=5Y=1 | X=5 Y=2 | X=5Y=3 | X=5 Y=4 | X=5 Y=5 | X=5, Y=6

; (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
X=6, Y=1 | X=6,Y=2 | X=6,Y=3 | X=6,Y=4 | X=6,Y=5 | X=6, Y=6

The joint PMF of (X,Y) is

, — ]P) X =z, Y = =
pxy(,y) ( ) 0  otherwise.

{% if 2,y € {1,2,3,4,5,6}
The marginal PMF of X

if z € {1,2,3,4,5,6}

otherwise.

O ol

px(@) = pxy(zy) =) PX=2Y =y) = {

Similarly, the marginal PMF of YV

if y € {1,2,3,4,5,6}

1
6
0 otherwise.

py(y) = ZPX,Y(QS,?J) = ZP(X = 45, W =g = {

Definition 2 (Multiple Discrete Random Variables). Multiple discrete random variables refer to a collection
(X1, Xo,...,X,) of n > 2 random variables defined on the same probability space. Their joint behavior is



described by the joint CDF:

Fx .. x,(@1,...,2,) =P(X; <xq,...,X,, <1z,).
The joint PMF px, . x,(z1,...,2,) is defined by

P(Xy=21,.... X, =2,) =Dxy. x0 (T1, -, Tn).

Marginal PMFs are obtained by summing over all but one variable, for example, marginal PMF of X5,
denoted by px,(x2), is given by

pX2(332) = ZZZZ Pxy,..., Xn(ﬂfl,---,xn)

1 r3 T4 Tn

= Z le ..... X"(xl,-..,l’n),

L1,L3;L4---,Tn

Example 3. Consider rolling two fair dice. Let X and Y denote the outcomes on first and second
die respectively, and define Z = X + Y. Then (X,Y,Z) is a trivariate random variable; the table
below provides a detailed view.
X\Y 1 2 3 4 5 6
(1.1) (1.2) (13) (1.4) (15) (16)
1 X=1,Y=1 X=1, Y=2 X=1, Y=3 X=1,Y=4 X=1, Y=5 X=1, Y=6
7=2 7Z=3 7=4 Z=5 =06 72="7
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
2 X=2,Y=1 X=2,Y=2 X=2,Y=3 X=2,Y=4 X=2,Y=H X=2, Y=6
7Z=3 7Z=4 Z=5 7=06 7="T 7=8
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
3 X=3, Y=1 X=3, Y=2 X=3, Y=3 X=3, Y=4 X=3, Y=5 X=3, Y=6
7=4 Z=5 =06 72="7 =8 7=9
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
4 X=4, Y=1 X=4,Y=2 X=4, Y=3 X=4,Y=4 X=4, Y=H X=4, Y=6
Z=5 7=06 7="7 7=8 7Z=9 Z=10
(5,1) (5.2) (5,3) (5.4) (5,5) (5,6)
5 X=5, Y=1 X=5, Y=2 X=h, Y=3 X=5,Y=4 H=d, W=h X=5, Y=6
7=06 =" =8 Z=9 Z=10 Z=11
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
6 X=6, Y=1 X=6, Y=2 X=6, Y=3 X=6, Y=4 X=6, Y=5 X=6, Y=6
7=" 7=8 7Z=9 Z=10 7=11 7=12




The joint PMF of (X,Y, Z) is

= if 1,2,3,4,5,6} and z =
prz(x,y,z):P(X::E,Y:y,Z:z): 36 1 x,y?{, y Oy 3y 0, }an z=z+y
Y 0 otherwise.

The marginal PMF of X

if z € {1,2,3,4,5,6}

otherwise.

O ol

px(z) = ZPX,Y,Z(SC,y, z) = ZIP’(X =z,Y=yZ=2= {

y7z

Similarly, the marginal PMF of YV

if y € {1,2,3,4,5,6}

otherwise.

O ol

pY(y) - ZPX,Y,Z(J;;%Z) - ZP(X = ‘T7Y - y7Z = Z) - {

Next, the marginal PMF of Z

(L ifze{2,12}
2 if p e (3,11}
3 if z € {4,10}
pz(z) = pr,yz(:n,y,z) = Z]P’(X =z,Y=y =2 = % if z € {5,9}

Ty Ty 2 if 2 € {6,8}
S fz=7

otherwise.

o

\

The expectation of a random variable is a fundamental concept in probability theory, extending naturally
to functions of multiple random variables.

Definition 3 (Expectation of a Function of Multivariate Random Variables). Let X = (X1, Xs,..., X,,)
be a vector of n random variables defined on a probability space, with a joint probability distribution. Let
9(X) = g(X1, X, ..., X,,) be a real-valued function of these random variables. If X has a joint probability
mass function (PMF) px(x1, 22, ..., z,), the expectation of g(X), denoted E[g(X)], is defined as

E[g(X>] = ZZ U Zg(xlwx% cee 7xn)pX('x17x27 cee ,l’n)7

1 €2 Tn

where the summation is over all possible values (z1,zs,...,x,) in the support of X, provided the sum
converges absolutely.

Example 4. Consider two discrete random variables X and Y with joint PMF P(X = z,Y = y).
For g(X,Y) = X + Y, the expectation is

EX+Y]=) > (z+yPX =2Y =y).




Theorem 1 (linearity property). For constants a and b,
Elag(X) + bh(X)] = aK[g(X)] + bE[A(X)],

assuming the expectations exist.

Proof. The proof relies on the linearity of the expectation. Let X have joint PMF px(x), where x =
(x1,...,2,). The expectation of the linear combination is

Elag(X) +bh(X)] = Y _lag(x) + bh(x)]px (x),

X

where the sum is over all possible x in the support. By linearity of summation,

Blag(X) + ()] = 3 g(xlpx(x) + 3 hxlpx(x) = aBly (X)) + EIA(X)

Lemma 1. If g(X) = X; for some i, the expectation reduces to the marginal expectation E[X;].

Definition 4 (Continuous Bivariate Random Variable). A bivariate random variable is a pair (X, Y’) where
X and Y are random variables defined on the same probability space (€2, F, P). The joint behavior of X
and Y is described by their joint cumulative distribution function (CDF):

Fxy(z,y) =P(X <z,Y <y).

The joint probability density function (PDF) fxy(x,y) (for continuous case) or probability mass function
(PMF) pxy(z,y) (for discrete case) provides the distribution over pairs of values. Marginal distributions
are obtained by integrating or summing over one variable:

/fxy:cymy, foly /fxyxy

(for continuous), or px(x) = >_, px,v(x,y) (for discrete).

Example 5 (Bivariate Uniform Distribution). Consider two random variables X and Y uniformly
distributed over the unit square [0, 1] x [0, 1].

- Joint PDF":

1 if0<z<1,0<y<1,

0 otherwise.

fxy(z,y) = {
- Marginal PDFs:
1 1
fx(a:):/ldy:1 (0<z<1), fy(y):/lda:: 0<y<1).
0 0

- Probability P(X + Y < 1): This is the area of the triangle from (0,0) to (1,0) to (0,1), which is
fol 01—1; ldydx = fol(l —z)de=[z—2?/2)§=1-1/2=1/2.

Application: Modeling the coordinates of a randomly chosen point in a square region.




Multiple Random Variables

Definition 5 (Multiple Random Variables). Multiple random variables refer to a collection (X7, Xs, ..., X,,)
of n > 2 random variables defined on the same probability space. Their joint behavior is described by the
joint CDF:

Fx,..x,(@1,...,2,) =P(X; <xy,....X,, < zp,).

For continuous variables, the joint PDF fx, x, (z1,...,x,) satisfies:

where A is a region in R™. Marginal distributions are obtained by integrating over all but one variable, for
example, marginal PDF of X5, denoted by fx,(z2), is given by

= / le ..... Xn <.§L’1, .. ) dﬂfl dl’g d$4 dﬂln
T1,23,T4 Tn

-----

= / Ixox, (@1, x,) dey des day - - - day,.
Rnfl

Definition 6 (Expectation of a Function of Multivariate Random Variables). Let X = (X1, Xa,..., X,,)
be a vector of n random variables defined on a probability space, with a joint probability distribution. Let
9(X) = g(X1, Xo, ..., X,) be a real-valued function of these random variables.

Discrete Case: If X has a joint probability mass function (PMF) px(xy, 22, ..., x,), the expectation
of g(X), denoted E[g(X)], is defined as

ZZ Zg xl?'x?)--wxn)pX('xl)'x?v"'axn)a
T1 T2

where the summation is over all possible values (z1,2s,...,x,) in the support of X, provided the sum
converges absolutely.

Continuous Case: If X has a joint probability density function (PDF) fx(x1,xs,...,z,), the expec-
tation is

:/ / g(l’l,:L'Q,,..,l’n)fx(a?l,l‘g,...,l‘n)dfldl’g‘"dl'n,

where the multiple integral is taken over the support of X, provided the integral converges absolutely.
In both cases, the expectation exists if the sum or integral of |g(X)| with respect to the joint distribution
is finite.

Theorem 2 (linearity property). For constants a and b,
Elag(X) + bh(X)] = aK[g(X)] + bE[A(X)],

assuming the expectations exist.



Proof. We proved this result for the discrete case in Topic-8, so we need to prove it for the continuous
case. Let X have joint PDF fx(x), where x = (z1,...,xz,). The expectation of the linear combination is

Blag30) + 00X = [ [ag) + Ul fc(rns- ) i - o,
L1y Ty
where the integral is over the support of X. By linearity of integration,

Elag(X) 4+ bh(X)] = a/ 9(x) fx(x1,...,2,) dry dxg - - - day,

T1yeeey Tn

77777

U
Lemma 2. If g(X) = X; for some i, the expectation reduces to the marginal expectation E[X;].

Example 6 (Trivariate Normal Distribution). Consider three random variables (X, Y, Z) following a trivari-
ate normal distribution with mean vector u = (0,0, 0) and a covariance matrix ensuring independence (e.g.,
diagonal with variances 1).

- Joint PDF (for independent normals):

1 _ a2 1y? 122

Ixyvz(r,y, 2) = We

- Marginal PDFs: Each X, Y, Zis N(0,1), i.e., fx(z) = \/%e"ﬁ/z. - Probability P(X?2+Y?+ 2% < 1):

This is the volume of a unit ball in 3D, approximately 0.5236, computed via fx2+y2+z2<1 fxyz(z,y, 2)dx.

Application: Modeling the positions of particles in a 3D space with independent Gaussian noise.

Independent Random Variable

Independence is a key concept in probability theory that describes random variables whose outcomes do not
influence each other. This property simplifies calculations, such as finding joint distributions or expectations
of products.

Definition 7 (Independent Random Variables). Two random variables X and Y are independent if the
events {X < z} and {Y < y} are independent for all real numbers z and y. Equivalently, their joint
cumulative distribution function (CDF) factors into the product of their marginal CDF's:

Fxy(z,y) =P(X <2,V <y) = Fx(z)Fy(y),
for all z,y € R.
For discrete random variables with probability mass functions (PMFs) px(z) and py (y), independence
implies the joint PMF is the product:
pxy (7, y) = px(7)py (v)-

For continuous random variables with probability density functions (PDFs) fx(x) and fy(y), indepen-
dence implies the joint PDF is the product:

fxy(z,y) = fx(2)fy(y).

More generally, a collection of random variables X, X5, ..., X, is mutually independent if the joint
CDF (or PMF/PDF) factors into the product of the individual marginals for any subset.



Example 7 (Independent Coin Flips). Consider two independent fair coin flips, where X is 1 for
heads on the first flip (0 for tails), and Y is 1 for heads on the second flip (0 for tails). Both X and
Y are Bernoulli(0.5).

The joint PMF is:

) = 711 for (z,y) € {(0,0),(0,1), (1,0, (1,1)}.

This factors as px (z)py (y) = (3) (3) = 1, confirming independence.

Application: Modeling independent binary outcomes, like success in separate trials.

Example 8 (Independent Dice Rolls). Let X and Y be the outcomes of two independent fair six-sided
dice rolls. Each is uniform on {1,2,3,4,5,6}.
The joint PMF is:

pxy(z,y) = z,y=1,...,6.

%7
This is the product % X %, so X and Y are independent.
Contrast: If Z = X 4+ Y, then X and Z are dependent, as knowing X affects the distribution of Z.

\.

Example 9 (Bivariate Uniform Distribution). Consider two random variables X and Y uniformly
distributed over the unit square [0,1] x [0, 1].

- Joint PDF":

1 if0<x<1,0<y <1,

0 otherwise.

fxy(z,y) = {

- Marginal PDF's:

1 1
fX(:z:):/ ldy=1 (0<z<1). fy(y):/ lde=1 (0<y<1)
0 0
- Notice that

Ixy(z,y) = fx(z) - fy(y) for all 2,y € R
{1 ifo<z<1,0<y<l,

0 otherwise.

Thus, random variables X and Y are independent.

Theorem 3. For real valued (nice) functions g and h, if X andY are independent (discrete or continuous)

random variables then

provided the expectations exist.




Proof. We proved this result for discrete case in Topic-8, so we need to prove for continuous case. Let
X, Y have joint PDF fxy(x,y). The expectation is

Elg // y) fxy(z,y)drdy.

where the sum is over all possible z, y in the support. By independence assumption, fxy(z,v) = fx(z)fy (y).
Consequently, factoring out terms with x and Y, we have

BlaOY)] = [ [ atahio) (o)) oy - ([ ottty i) = [ 50 ).

Notice that

Therefore,

Theorem 4. If X and Y are independent random variables, and define Mz (t) = E(e'?) then
My (t) = Mx(t) - My (2).
Proof. Observe that
Mxyy (t) = (/&) = E(e!X . o).

Since X is a function of X only and e is a function of Y only, using independence and Theorem 2 above,
we have

My y(t) =E(™ - ™) = E(¥) - E(e™) = Mx(t) - My (t).

Covariance

Similar to variance we have a measure for together-variability of two random variables, known as covariance.

Definition 8 (Covariance). Let X and Y be two random variables, then the covariance between them is
denoted by Cov(X,Y) and defined as

Cov(X,Y) =E[(X —E(X))(Y —E(Y))].
Theorem 5. For any two random variables X and Y,
Cov(X,Y) = E[XY] — E[X]E[Y].

provided the expectations E[X], E[Y], and E[XY] exist.



Proof. We have from definition
Cov(X,Y) =E[(X —E[X]))(Y —E[Y])].
Expand the expression inside the expectation
(X —E[X])(Y —E[Y]) = XY — XE[Y] - YE[X]| + E[X]|E[Y].
Take the expectation of both sides, we have

Cov(X,Y) = E[(X —E[X])(Y —E[Y])] = E[XY — XE[Y] — YE[X] + E[X]E[Y]]
= E[XY] - E[XE[Y]] — E[YE[X]] + E[E[X]E[Y]], using linearity of expectation.

Now, E[X] and E[Y] are constants, so

E =

[ .
[YE[X]] = E[Y] - E[X] = E[X] - E[Y]

Substitute these into the above equation, we get
E[(X — EX])(Y — E[Y])] = E[XY] - E[X]E]Y] - EX]E[Y] + EX]E[Y].

Thus,
Cov(X,Y) = E[XY] — E[X]E[Y].

Theorem 6. If X and Y are independent, then Couv(X,Y) = 0.

Proof. Using indepence of X and Y, and Theorem 2 we have E(XY) = E(X)E(Y). Therefore using
Theorem 3, we have

Cov(X,Y) = E[XY] — E[X]E[Y

5

Theorem 7. For any two random variables X and Y,
Var(X +Y) = Var(X) + Var(Y) 4+ 2 Cov(X,Y).
Additionally, if X and Y are independent random variables, then

Var(X +Y) = Var(X) + Var(Y).

10



Proof. Using definition,

Var(X +Y) = E[[(X +Y) —E(X + YY)
=E[(X+Y)-EX +Y)J
= E[[(X —E(X)) + (Y —E(Y))]?]
= E[(X —E(X))* + (Y = E(Y))* + 2(X — E(X))(Y —E(Y))]

So, using linearity of expectation, we have
Var(X +Y) = E[(X —E(X))?] + E[(Y — E(Y))?] + 2E[(X — E(X))(Y — E(Y))].

Now using definitions of variance and covariance, that is, Var(X) = E[(X — E(X))?], Var(Y) = E[(Y —
E(Y))?] and Cov(X,Y) = E[(X —E(X))(Y = E(Y))], we have

Var(X +Y) = Var(X) 4+ Var(Y) + 2 Cov(X, Y).

This proves the first part. Next, if X and Y are independent, from Theorem 4, we have Cov(X,Y) = 0,
substituting in above expression, we get

Var(X +Y) = Var(X) + Var(Y).
U

Remark 1. Covariance measures linear dependence; independence implies zero covariance, but not vice
versa.

Theorem 8. Let X4,...,X, be random variables defined on the same probability space. Then, for any
constant a € R and i € {1,...,n}, , Var(aX;) = a*Var(X;), and

Var(X; + Xo+ -+ X)) = Z Var(X;) + Z Cou(X;, X;)

i=1 1<i#j<n
= Z Var(X;) + 2 Z Cov(X;, X;)
i=1 1<i<j<n

Moreover, if Xq,..., X, are independent then

Var(X; + Xo + -+ X,) = Y Var(X

Proof. By the definition of variance, Var(Y) = E[Y?] — (E[Y])?. So, for any i € {1,...,n},

Var(aX;) = E[(aX;)?] - (E[aX;])?
= E[’X?] — (aE[Xi])”
= a’E[X7] — o*(E[X])?
= a* (E[X7] - (E[Xi])?)
= Var(aX;) = a*Var(X;)

11



First part is proved. Next, let S, = X + - - - + X,,. By the definition of variance:

Var(S,) = E[S,] — (E[S.])*

Using the linearity of expectation, we have E[S,] = >""" | E[X;]. For S2, we write:

w5 (Bn) -2

n n

= F ;jl ] > ) EXiX]]

i=1 j=1

Taking the expectation:

Now we can express the variance of the sum:

s () ()

i=1 j=1

:Zn:iE[Xin] —ZZEX E[X

i=1 j=1

— Z Z(E[Xin] — E[XG|E[X}])

=> Y Cov(X;, X;)

i=1 j=1
The double summation can be split into terms where ¢ = j and ¢ # j:
Var(S, ZCOV X, X))+ Y Cov(X;, X))
1<i#5<n
Since Cov(X;, X;) = Var(X;), the expression becomes:
Var(S Z\/ar Z Cov(X;, X;)
1<i#j<n

Due to the symmetry Cov(X;, X;) = Cov(Xj, X;), the second term can be rewritten:

Z COV(XZ‘,X]') =2 Z COV(Xian)

1<i#£j<n 1<i<j<n

This gives the second form of the identity.
Finally, if X3, ..., X, are independent, then for any i # j, Cov(X;, X;) = 0. Substituting this into the

general formula:
Var(S Z\/ar )+ 2 Z O—ZVar

1<i<j<n

12



Correlation

Definition 9 (Correlation). Let X and Y be two random variables, then the correlation coefficient between
them is denoted by Corr(X,Y’) and defined as The correlation coefficient is

~ Cov(X)Y)
Corr(X,Y) = /Var(X)Var(Y)

Theorem 9. Corr(X,Y') ranges from -1 to 1.

Correlation normalizes covariance to measure the strength and direction of a linear relationship.

Positive and Negative Correlation

- Positive Correlation (Corr(X,Y) > 0): As X increases, Y tends to increase (e.g., height and weight).
- Negative Correlation (Corr(X,Y) < 0): As X increases, Y tends to decrease (e.g., hours studied and
errors on test).

7

Example 10 (Positive). Height (X) and weight (Y') in adults: p ~ 0.7, positive.

Example 11 (Negative). Price (X) and demand (Y) for a product: As price rises, demand falls,
p <0.

\. J

Remark 2. Zero correlation means no linear relationship, but nonlinear dependence may exist.

a )

Example 12. Consider discrete random variables X and Y with their PMF

1/4, if x=1,y=1
1/4, if r=-1y=1
1/2, if z=0,y=0

0, otherwise.

pX,Y(l'a y) =

Then, the marginal PMF of X is

1/4, if z=1
1/4, if z=-1
1/2, if 2=0

0, otherwise.

px(z) = ZPX,Y(%?J) =

and the marginal PMF of YV is

12, if y=1
py(y) =) pxy(z,y)=<1/2, if y=0

0, otherwise.

So,

1
E(XY)=1-1-7+(-1)-1- 74005 =

13



Thus,
Cov(X,Y) =E[XY] -E[X]E[Y]=0 = Corr(X,Y)=0.

However, Y = X? is the perfect quadratic relationship between X and Y.

Result: Verify that here X and Y are not independent. This means zero correlation (covariance)
does not imply independence.

Conditional Random Variables

In probability theory, a conditional random variable is a random variable whose probability distribution
depends on the outcome of another random variable or event, extending the concept of conditional prob-
ability. If X and Y are random variables, X|Y represents the distribution of X for each possible value of
Y.

Discrete Conditional Random Variables

For discrete random variables X and Y with joint PMF px y(z,y), the conditional PMF of X given Y =y

is defined as:
Px)y (1' Y )

, for >0
() py(y)

pX|Y(5U|y) =

where py (y) is the marginal PMF of Y.

7

Example 13 (Flipping three fair coins). Consider the experiment of flipping a fair coin three times.
The sample space €2 consists of 8 equally likely outcomes.

O ={HHH HHT,HTH, HTT,THH,THT,TTH, TTT}

Let X be a random variable representing the number of heads, and let Y be an indicator random
variable such that Y = 1 if the first flip is heads, and Y = 0 otherwise. We want to find the conditional
PMF of X given that Y = 1.

1. Marginal PMF

The event Y = 1 corresponds to the set of outcomes where the first flip is a head.
{Y=1}={HHH,HHT,HTH,HTT}

The marginal probability of this event is:
CHy =1 4 1

py(1) =P =1) Q) =3
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2. Joint PMF values for YV =1

Next, we find the joint probabilities px y (z, 1) for the possible values of X. Since the event {Y =1}
has already occurred, X can only take values {1, 2, 3}.

e pxy(1,1) =P(X =1and Y = 1): The outcome is HT'T.
1
pxy(1,1) = 3
e pxy(2,1) =P(X =2 and Y = 1): The outcomes are HHT and HTH.
2
pxy(2,1) = 3
e pxy(3,1) =P(X =3 and Y = 1): The outcome is HHH.
pxy(3,1) = 3
3. Conditional PMF
= pxxy@d  por each value of

The conditional PMF of X given Y = 1 is defined as pxy(z|1) = )
z € {1,2,3}:

e For x = 1: (1 1) 1/8 ]
Pxy (L,
1]_ = ) L = = -
e For z = 2:
pX7y(2 1) B 2/8 B 2 _ 1

pxpy(21) = py(13 “12 4 2

e For x = 3: (3 1) 1/8 ]
Px,y (9,

3 1 = ==X == —_ = = _— =

PP ="0 0 T T

Summary of the Conditional PMF

The conditional PMF can be summarized in a table:
T 1 2 3
pX|y(:v|1) 1/411/2|1/4

Note that ) pxy(z|1) =1/4+1/2+1/4 =1, as required for a valid PMF.
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Continuous Conditional Random Variables

For continuous random variables X and Y with joint PDF fxy(z,y), the conditional PDF of X given
Y =yis:

fxy(zly) = %{;’)y)7 for fy(y) >0

where fy(y) is the marginal PDF of Y.

Example 14 (Conditional distribution of uniform variables). Given the joint PDF of continuous
random variables X and Y:

3 forz?<y<1,and0<z<1

fX7Y(x7y) = {2

0 otherwise

We want to find the conditional PDF of Y given X = z.

1. Marginal PDF of X

The marginal PDF of X, denoted by fx(z), is found by integrating the joint PDF with respect to y

over its full range. For a given x where 0 < z < 1, the function is non-zero only for y between z? and
1.

fx(z) = /OO Ixy(z,y)dy
1
3

This marginal PDF is valid for 0 < z < 1, and fx(z) = 0 otherwise.

2. Conditional PDF of Y given X ==z
The conditional PDF of Y given X = z, denoted by fy|x(y|x), is given by the formula fy|x(y|z) =

fx,y(z,

Tx)y)’ for any x where fx(z) > 0. Substituting the joint and marginal PDFs:

3
frix(yle) = i :

S1—a2) 1-a2

This conditional PDF is defined for the range of y where the joint PDF is non-zero, which is 2% <
y <1
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3. Conclusion

The result shows that for a fixed value of z, the conditional distribution of Y is uniform over the
interval [z2,1].

L forz?<y<i1
1—22 — —
€T _—
fY‘X<y| ) {0 otherwise

The length of this interval is (1 — 2*), and the height of the uniform density is —— th, which confirms
that it is a valid uniform distribution.

Conditional Expectation

The conditional expectation of a random variable is its expected value with respect to its conditional
distribution.

Definition 10 (Conditional Expectation). For discrete and continuous cases, conditional expectation are
defind as:

e Discrete: E[X|Y =y] =" 2 pxiy(z|y)
e Continuous: E[X|Y =y| = [ - fxy(z|y)dz
E[X]Y] is a random variable that is a function of Y.

Theorem 10. The Law of Total Expectation states E[X| = E[E[X]|Y]].

7

Example 15 (Three coins example). Let X be the number of heads in three fair coin flips, and Y
be an indicator random variable such that Y = 1 if the first flip is a head, and Y = 0 otherwise. We
want to find the conditional expectation E[X|Y = 1].

First, we use the conditional PMF px|y(x|1) derived from the example. The formula for the condi-
tional expectation of a discrete random variable is:

E[X|Y =1] = E:xpmy|1

Substituting the values of the conditional PMF for = € {1,2,3}:

EXTY = 1] = (1) - pxpy (11) + (2) - pxjy (2[1) + (3) - px1y (3[1)

1 1 1

=(1)-= 2). = -

(e 5@ =+ )5
—1+1+3
4 4
—4+1
4
=2

The calculation using the conditional PMF yields an expected value of 2.
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Definition 11 (Identically distributed RVs). Let random variables X and Y have CDFs Fx(-) and Fy(+),
respectively. The Rvs X and Y are identically distributed (or are equal in distribution) is denoted by

XLy,

and defined as
Fx(a) = Fx(a) forall aecR.

For discrete RVs, equality of PMFs gives equality of distribution, and for continuous RVs, equality of PDFs
gives equality of distribution.

The random variables Xy, X, ..., X,, are identically distributed, can be written as,

X, Lx, L Lx,.

Example 16. For example, if they all follow a normal distribution with mean 0 and variance o2, i.e.,
X1, Xo, ..o, Xn ~ N(0,0%),

then
4

X, Lx, L Lx,.

ITD Random Variables

Definition 12 (IID Random Variables). Independent and Identically Distributed (IID) random variables
are a sequence Xi, Xo,... that are independent and each has the same distribution.

IID is common in sampling, e.g., multiple independent trials from the same distribution. Let X, Xo,..., X,
be a sequence of n random variables that are independent and identically distributed (IID). This means:

e Independent: The outcome of any single variable does not influence the outcome of the others.

e Identically Distributed: All the variables are drawn from the same probability distribution. Con-
sequently, they share the same mean () and variance (0?).

This immediately follows:
e E[X;]=pforalli=1,... ,n.
o Var(X;) =c?foralli=1,...,n.

Example 17. Repeated fair die rolls: Each X; uniform on {1,2,3,4,5,6}, independent.

Sample mean

The sample average, or sample mean, of these variables is denoted as X and

X: fd
n

X1+ Xo+- 4+ X, 1<
— X;.

Theorem 11. Let Xy,..., X, are IID random variables with B(X,) = p and Var(X;) = 0. Define
X =15" X, Then, E[X]=p.

T n
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Proof. This is derived using the linearity of expectation, which states that the expectation of a sum is
the sum of expectations.

EX]=E %ix]

1 " 1 & 1 <
= E ZX] :EZ]E[XZ]:EZM
Z%(nu)

= E[X] =pu

0

Theorem 12. Let Xy,..., X, are IID random variables with B(X,) = p and Var(X;) = 0. Define
X =1%"X,. Then, Var(X) = o?/n.

Remark 3. This property demonstrates that as the sample size increases, the spread of the sample mean
decreases.

Proof. We use Theorem 8 to find the variance of X. Observe that

Var(X) Var( ZX)
( > Var (ZX) QZZZ;Var(X)
_%2

= Var(X) = %.
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