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MTL108: Solution to Problem Set-2

Rahul Singh

IIT delhi

Problem 1: There are k people in a room. Assume each person’s birthday is equally likely to be
any of the 365 days of the year (we exclude February 29), and that people’s birthdays
are independent (we assume there are no twins in the room). What is the probability
that two or more people in the group have the same birthday?

Solution. Let the event D be “at least two people share a birthday”. It is easier to
compute the complement event Dc = “all k birthdays are distinct”. Under the uniform
independent model,

P(Dc) =
365 · 364 · 363 · · · (365− k + 1)

365k
=

k−1∏
i=0

365− i

365
,

provided k ≤ 365. Hence

P(D) = 1−
k−1∏
i=0

365− i

365
.

If k > 365, the pigeonhole principle forces a repeat and so P(D) = 1.

This formula is the usual form of the birthday-problem probability. For example, at
k = 23 the probability exceeds 1/2 (this is a classical surprising fact).

Problem 2: Suppose we choose a positive integer at random, according to some unknown probabil-
ity distribution. Suppose we know that P({1, 2, 3, 4, 5}) = 0.3, P({4, 5, 6}) = 0.4 and
P({1}) = 0.1. What are the largest and smallest possible values of P({2})?

Solution. Let pi = P({i}) for i = 1, 2, . . .. The given information becomes

p1 + p2 + p3 + p4 + p5 = 0.3, p4 + p5 + p6 = 0.4, p1 = 0.1.

From the first and third equations we get

p2 + p3 + p4 + p5 = 0.2.

Hence
p2 = 0.2− (p3 + p4 + p5).

Since probabilities are nonnegative, p3, p4, p5 ≥ 0, so the sum p3 + p4 + p5 ranges
between 0 and (at most) 0.2. Therefore:

0 ≤ p2 ≤ 0.2.

Attainability (constructive examples).
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• To attain the maximum p2 = 0.2, set p3 = p4 = p5 = 0. Then p1 = 0.1, p2 = 0.2.
The equation p4 + p5 + p6 = 0.4 forces p6 = 0.4. The remaining probability mass
(if any) can be assigned to p7, p8, . . . so that the total sums to 1 (for instance
assign the remainder 0.3 to p7). This yields a valid probability distribution.

• To attain the minimum p2 = 0, set p2 = 0 and choose p3, p4, p5 so that p3 +
p4 + p5 = 0.2; for example p3 = 0.2, p4 = p5 = 0. Then p6 must be 0.4 (since
p4 + p5 + p6 = 0.4). Again put any remaining mass on higher indices to reach
total 1. This yields a valid distribution with p2 = 0.

Thus the largest possible value is 0.2 and the smallest possible value is 0.

Problem 3: Show that for any three events A, B and C,

P(A∪B∪C) = P(A)+P(B)+P(C)−P(A∩B)−P(A∩C)−P(B∩C)+P(A∩B∩C).

Solution. This is the inclusion–exclusion formula for three sets. There are several
proofs; one clear combinatorial/probabilistic proof is by adding and subtracting over-
laps so that every elementary outcome that belongs to at least one of A,B,C is counted
exactly once on the right-hand side. We discussed this in a lecture; a different proof
is provided below.

Start from the two-set identity

P(A ∪B) = P(A) + P(B)− P(A ∩B),

and apply it twice. Consider

P(A ∪B ∪ C) = P((A ∪B) ∪ C) = P(A ∪B) + P(C)− P((A ∪B) ∩ C).

Now substitute the two-set formula for P(A ∪B) and expand

(A ∪B) ∩ C = (A ∩ C) ∪ P(B ∩ C),

then apply the two-set formula again to P((A ∩ C) ∪ P(B ∩ C)). Carrying out these
substitutions and simplifications yields exactly

P(A) + P(B) + P(C)− P(A ∩B)− P(A ∩ C)− P(B ∩ C) + P(A ∩B ∩ C).

This completes the proof.

Problem 4: (Inclusion–Exclusion Principle for n Events). Let A1, . . . , An be n events. Prove the
inclusion–exclusion formula:

P
( n⋃

i=1

Ai

)
=
∑

1≤i≤n

P(Ai)−
∑

1≤i<j≤n

P(Ai∩Aj)+
∑

1≤i<j<k≤n

P(Ai∩Aj∩Ak)−· · ·+(−1)n+1P
( n⋂

i=1

Ai

)
.

Solution (proof by induction). We prove the formula by induction on n.
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Base case n = 2: we know for two sets,

P(A1 ∪A2) = P(A1) + P(A2)− P(A1 ∩A2)

=
∑

i∈{1,2}

P(Ai)−
∑

1≤i<j≤2

P(Ai ∩Aj).

So, the hypothesis holds for n = 2.

Inductive step: assume the formula holds for n − 1 events. So, if we denote B =⋃n−1
i=1 Ai, then we have

P(B) =
n−1∑
i=1

P(Ai)−
∑

1≤i<j≤n−1

P(Ai ∩Aj) + · · ·+ (−1)n P
( n−1⋂

i=1

Ai

)
. (1)

Next, using P(C ∪D) = P(C) + P(D)− P(C ∩D) and
⋃n

i=1Ai = B ∪An, we have

P
( n⋃

i=1

Ai

)
= P(B ∪An) = P(B) + P(An)− P(B ∩An).

Substituting P(B) from the inductive hypothesis (1) and using

B ∩An =
n−1⋃
i=1

(Ai ∩An),

we have

P
( n⋃

i=1

Ai

)
= P(B) + P(An)− P(B ∩An)

=

n−1∑
i=1

P(Ai)−
∑

1≤i<j≤n−1

P(Ai ∩Aj) + · · ·+ (−1)n P
( n−1⋂

i=1

Ai

)
+ P(An)− P

(
n−1⋃
i=1

(Ai ∩An)

)

Applying the inclusion–exclusion formula (for n− 1 sets) to the union
⋃n−1

i=1 (Ai ∩An)
using (1), we have

P

(
n−1⋃
i=1

(Ai ∩An)

)
=

n−1∑
i=1

P(Ai∩An)−
∑

1≤i<j≤n−1

P(Ai∩An∩Aj)+· · ·+(−1)n P
( n−1⋂

i=1

Ai∩An

)
.

Substituting in the above expression and simplifying term-by-term gives exactly the
n-term alternating sum in the statement. Also the combinatorial signs match since
each k-fold intersection containing An appears with opposite signs and cancels appro-
priately. Thus the formula holds for n. This completes the induction.

An alternative direct proof is combinatorial, proof sketch: for each elementary outcome
ω, count how many times it is counted by the right-hand side according to the number
m of the Ai’s that contain ω; the alternating sum evaluates to 1 whenever m ≥ 1 and
to 0 when m = 0, so the RHS equals the indicator of the union and integrating gives
the formula.
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Problem 5: (Boole’s Inequality). Let A1, . . . , An be events. Show

P
( n⋃

i=1

Ai

)
≤

n∑
i=1

P(Ai).

Solution. For n = 2 we have

P(A1 ∪A2) = P(A1) + P(A2)− P(A1 ∩A2),

and P(A1 ∩A2) ≥ 0, so
P(A1 ∪A2) ≤ P(A1) + P(A2),

Assume it holds for n− 1. Then

P
( n⋃

i=1

Ai

)
= P

( n−1⋃
i=1

Ai

)
+ P(An)− P

(( n−1⋃
i=1

Ai

)
∩An

)
.

Since the last term is nonnegative we get

P
( n⋃

i=1

Ai

)
≤ P

( n−1⋃
i=1

Ai

)
+ P(An) ≤

n−1∑
i=1

P(Ai) + P(An),

where the final inequality uses the induction hypothesis. This proves the inequality
for n.

This inequality is sometimes called the union bound and is extremely useful because
it gives a simple (though not always tight) upper bound for the probability of a union.

Problem 6: Two fair dice are rolled. Let X and Y be the outcome of the first die and the second
die, respectively. Determine which of the following statements is/are true:

(a) P(X + Y = a prime number ) =
5

12
,

(b) P(|X − Y | = a prime number ) =
4

9
,

(c) P(X + Y = a perfect square) =
1

6
,

(d) P(|X − Y | = a prime number ) =
5

9
.

Solution. There are 36 equally likely ordered outcomes (x, y) with x, y ∈ {1, . . . , 6}.
(a) Sums possible are 2, . . . , 12. Prime sums in this range are 2, 3, 5, 7, 11. Count
ordered outcomes giving these sums:

sum 2 : (1, 1) ⇒ 1,

sum 3 : (1, 2), (2, 1) ⇒ 2,

sum 5 : (1, 4), (2, 3), (3, 2), (4, 1) ⇒ 4,

sum 7 : (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1) ⇒ 6,

sum 11 : (5, 6), (6, 5) ⇒ 2.
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Total 1 + 2 + 4 + 6 + 2 = 15 favourable outcomes, so

P(sum is prime) =
15

36
=

5

12
.

Thus (a) is true.

(b) Consider |X − Y |. Possible absolute differences are 0, 1, 2, 3, 4, 5. Primes among
these are 2, 3, 5 (note 1 is not prime). Count ordered outcomes:

- |X − Y | = 2: pairs (1, 3), (2, 4), (3, 5), (4, 6) and their reverses ⇒ 8 outcomes.

- |X − Y | = 3: (1, 4), (2, 5), (3, 6) and reverses ⇒ 6 outcomes.

- |X − Y | = 5: (1, 6) and (6, 1) ⇒ 2 outcomes.

Total favourable 8 + 6 + 2 = 16, hence

P(|X − Y | is prime) =
16

36
=

4

9
.

So (b) is true.

(c) Perfect-square sums in [2, 12] are 4 and 9.

- sum 4: (1, 3), (2, 2), (3, 1) ⇒ 3 outcomes.

- sum 9: (3, 6), (4, 5), (5, 4), (6, 3) ⇒ 4 outcomes.

Total 7 outcomes, so probability 7/36 ̸= 1/6 (since 1/6 = 6/36). Thus (c) is false.

(d) This repeats (b) but with 5/9; since (b) gave 4/9, (d) is false.

Problem 7: Three biscuit-making machines A, B and C: A makes 35%, B makes 27%, C makes
the rest. Broken rates: A: 4%, B: 1%, C: 9%. Selected biscuit is broken. What is the
probability it was NOT made by A?

Solution. Let events A,B,C denote the biscuit came from that machine; let E denote
“broken”. Then events A,B,C denote a partition of the sample space, as a biscuit is
made by exactly one of the machines. With this modeling, we have:

P(A) = 0.35, P(B) = 0.27, P(C) = 1− 0.35− 0.27 = 0.38.

Also, given the conditional probabilities are

P(E|A) = 0.04, P(E|B) = 0.01, P(E|C) = 0.09.

We are interested in finding, P(Ac|E). We know that

P(Ac|E) + P(A|E) = 1 ⇒ P(Ac|E) = 1− P(A|E).

Now we aim to find P(A|E).

Using total probability, the probability that a randomly selected biscuit is broken is
given by

P(E) = P(A)P(E|A) + P(B)P(E|B) + P(C)P(E|C).

Substituting values, we have

P(E) = 0.35(0.04) + 0.27(0.01) + 0.38(0.09) = 0.014 + 0.0027 + 0.0342 = 0.0509.
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Now by Bayes’ rule,

P(A | E) =
P(A)P(E | A)

P(E)
=

0.014

0.0509
=

140

509
≈ 0.27505.

Hence the probability it was NOT made by A is

P(Ac|E) = 1− P(A | E) = 1− 140

509
=

369

509
≈ 0.72495.

Problem 8: A fair die is rolled twice independently. Let X,Y be the two outcomes. Define Z =
X + Y and W the remainder when Z is divided (integer division) by 6 (so W ∈
{0, 1, 2, 3, 4, 5}). Prove or disprove:

(i) Events {X = a} and {W = b} are independent for a = 4, 5, 6 and b = 0, 1, 2,

(ii) Events {X = a} and {W = b} are independent for a = 1, b = 5,

(iii) Events {X = a} and {Z = b} are independent for a = 1, b = 1,

(iv) Events {X = a} and {Z = b} are independent for a = 1, b = 5.

Solution. Outcome table is given below.

X X
Z 1 2 3 4 5 6 W 1 2 3 4 5 6

Y

1 2 3 4 5 6 7

Y

1 2 3 4 5 0 1
2 3 4 5 6 7 8 2 3 4 5 0 1 2
3 4 5 6 7 8 9 3 4 5 0 1 2 3
4 5 6 7 8 9 10 4 5 0 1 2 3 4
5 6 7 8 9 10 11 5 0 1 2 3 4 5
6 7 8 9 10 11 12 6 1 2 3 4 5 0

First note P(X = a) = 1/6 for any a ∈ {1, . . . , 6}. Compute P(W = b): observe that
sums Z range 2, . . . , 12 with frequency 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1 respectively. Grouping
sums by remainder when divided by 6: each remainder class b ∈ {0, 1, 2, 3, 4, 5} is
attained by exactly two sums whose frequencies sum to 6. Hence

P(W = b) =
6

36
=

1

6
for all b ∈ {0, . . . , 5}.

Thus W is uniform on {0, . . . , 5}.
Now for fixed a, b,

{X = a}∩{W = b} = {X = a, (a+Y ) ≡ b (mod 6)} = {X = a, Y ≡ b−a (mod 6)}.

For each remainder class when divided by 6 there is exactly one element of {1, . . . , 6}
having that remainder when divided by 6. Thus for any given a, b there is exactly one
value y ∈ {1, . . . , 6} meeting y ≡ b− a (mod 6). Therefore

P({X = a} ∩ {W = b}) = 1

36
.

But P(X = a)P(W = b) = (1/6)(1/6) = 1/36. Hence for all a ∈ {1, . . . , 6} and all
b ∈ {0, . . . , 5} the events {X = a} and {W = b} are independent. In particular:
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(i) For a = 4, 5, 6 and b = 0, 1, 2 independence holds. ✓

(ii) For a = 1, b = 5 independence also holds (by the general argument). ✓

Next consider independence with Z (the actual sum).

For (iii): b = 1 is impossible since Z ≥ 2, so P(Z = 1) = 0. Then for any a,

P({X = a} ∩ {Z = 1}) = 0 = P(X = a)P(Z = 1),

so {X = a} and {Z = 1} are trivially independent. In particular for a = 1, b = 1 they
are independent. ✓

For (iv): take a = 1, b = 5. Compute

P(Z = 5) =
#{(x, y) : x+ y = 5}

36
=

4

36
=

1

9
,

and

P({X = 1} ∩ {Z = 5}) = P(X = 1, Y = 4) =
1

36
.

But P(X = 1)P(Z = 5) = (1/6)(1/9) = 1
54 ̸= 1

36 . Therefore {X = 1} and {Z = 5} are
not independent. ×

Problem 9: Let A and B be events with P(A) > 0. Prove or disprove

P(B | A) ≥ 1 +
P(B)

P(A)
− 1

P(A)
.

Solution. Rearranging the right-hand side,

1 +
P(B)

P(A)
− 1

P(A)
=

P(A) + P(B)− 1

P(A)
.

So the inequality is equivalent to

P(A ∩B)

P(A)
≥ P(A) + P(B)− 1

P(A)
,

because
P(A ∩B) ≥ P(A) + P(B)− 1.

But this last inequality is always true: from

P(A ∪B) = P(A) + P(B)− P(A ∩B) ≤ 1

we obtain
P(A ∩B) ≥ P(A) + P(B)− 1.

Thus the claimed inequality holds for all events with P(A) > 0. Equality holds exactly
when P(A ∪B) = 1 (i.e. the union has probability one).
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