MTL108
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In real-world scenarios, events often depend on specific conditions or prior knowledge. For example, the
probability of rain might change if we know it’s already cloudy, or the likelihood of a medical diagnosis
might shift based on test results. Conditional probability provides a mathematical framework to quantify
these dependencies, enabling more accurate predictions and decision-making in fields like statistics, machine
learning, and risk analysis.

Definition 1 (Conditional Probability). Let A and B be two events in a probability space with P(B) > 0.
The conditional probability of A given B, denoted P(A | B), is defined as

P(AN B)

P(A|B)= —————

This represents the probability that event A occurs, given that event B has already occurred.

Example 1. Suppose we have a fair six-sided die. Let A be the event that the roll is even (i.e.,
2,4, or 6), so P(A) = 1/2. Let B be the event that the roll is greater than 3 (i.e., 4, 5, or 6), so
P(B) = 1/2. The intersection A N B is the event of rolling 4 or 6, so P(AN B) =1/3.

Thus,
]P’(A ’ B) = 1_/3 = 2
1/2 3

This means, given that the roll is greater than 3, the probability it is even is 2/3.

Example 2. Consider a family with two children, where each child is equally likely to be a boy (B)
or a girl (G) with probability 1/2, and the gender of one child does not affect the other. It is known
that at least one of them is a girl. What is the probability that both are girls, given this information?
What if it is known that the elder child is a girl?

Solutions: The sample space for the genders of two children (elder, younger) is:
Q= {<Ga G)> (G’ B), (B, G), (Ba B)}>
where GG denotes a girl and B denotes a boy. Each outcome has probability:

1
P((G,G)) = P((G, B)) =B((B,G)) =B((B, B)) = 7.
At Least One Girl: Let A be the event that both children are girls, i.e., A = {(G,G)}. Thus,
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Let B be the event that at least one child is a girl, i.e., B = {(G, G), (G, B), (B, G)}. The probability
of B is: 111 3
P(B) =P((G,G) +P(G, B)) +P((B,G)) = ; + ; + ;= -
The intersection A N B is the event that both are girls and at least one is a girl, which is simply
A ={(G,G)}, since (G, G) satisfies both conditions. Thus,
1
P(ANB)=P(A) = 1

Using the definition of conditional probability,

P(ANB) 1/4 1
P(A|B)= 35 =31=75

Alternatively, given at least one girl, the sample space reduces to {(G,G), (G, B),(B,G)}, each
equally likely with conditional probability 1/3. Only (G, G) corresponds to both being girls, so the
probability is 1/3.

Elder Child is a Girl: Let C be the event that the elder child is a girl, i.e., C = {(G, G), (G, B)}.
The probability of C' is:

P(C) =P((G,G)) +P((G, B)) =

+

1
ok

B |
|

The intersection AN C' is the event that both are girls and the elder is a girl, which is A = {(G, G)}.
Thus,

P(ANC)=P(A) = -.
Using conditional probability,

P(ANC) 1/4 1
IP’(A|C)—W—1/—2—§.
Alternatively, given the elder child is a girl, the sample space reduces to {(G, G), (G, B)}, each with
conditional probability 1/2. Only (G, G) corresponds to both being girls, so the probability is 1/2.
The difference in probabilities (1/3 vs. 1/2) arises because the condition “at least one is a girl”
includes more outcomes ((B,G)) than “elder is a girl,” affecting the conditional sample space. This
highlights how specific information influences conditional probabilities, a key insight in applications
related to real-world scenarios.

Definition 2 (Two independence events). Two events A and B are said to be independent if
P(AN B) =P(A)P(B).

Equivalently, if P(B) > 0, then P(A | B) = P(A), meaning the occurrence of B does not affect the
probability of A.

Definition 3 (Mutually independent events). For more than two events, say A, As, ..., A,, they are



mutually independent if for every subset I C {1,2,...,n},

P (ﬂ Ai) =[] P).
iel iel
Definition 4 (Pairwise independent events). A collection of events, say A, As, ..., A,, are pairwise inde-
pendent if for every 1 <i # j <mn,

P (A; 0 Aj) = P(A;)P(4;).

Example 3. Consider flipping two fair coins. Let A be the event that the first coin is heads,
P(A) = 1/2. Let B be the event that the second coin is heads, P(B) = 1/2. The intersection A N B
(both heads) has P(AN B) =1/4 = (1/2)(1/2), so A and B are independent.

Next, let C' be the event that both coins show the same face and D be the event denoting at least
one head. Then P(C) = 1/2, P(D) = 3/4, and P(C N D) = P(both heads) = 1/4 # (1/2)(3/4) =
P(C)P(D), so C and D are not independent.

Remark 1 (Independent vs disjoint events). In probability theory, the concepts of independent events
and disjoint events are distinct and often confused, but they describe fundamentally different relationships
between events. Understanding their differences is crucial for correctly applying probability concepts. In
summary, independence relates to the probabilistic influence of events, while disjointness concerns their
mutual exclusivity.

Recall, two events A and B are disjoint (or mutually exclusive) if they cannot occur simultaneously,
ie., ANB=1{. Thus, P(ANB) =0.

Disjoint events with positive probabilities cannot be independent, except in the trivial case where at
least one event has zero probability. If A and B are disjoint and P(A) > 0, P(B) > 0, then P(AN B) =0,
but P(A)P(B) > 0, so P(AN B) # P(A)P(B), violating the condition for independence. Conversely,
independent events with positive probabilities are typically not disjoint, as their intersection has probability
P(A)P(B) > 0. For instance, in the coin flip example, the events are independent and their intersection
(both heads) has positive probability.

Lemma 1. For any two events A and B,

P(AN B) = B(B | A)P(A).

Proof. If P(A) =0, then
ANBCA=0<PMANB)<PA) =PANB)=0=P(B|A)P(A).
Next, if P(A) > 0, then by definition of conditional probability:
P(BNA) P(ANB)

P(B|A) = —5op— = —peay = PANE) = B(B| AR(A)

g

Theorem 1 (Total probability theorem). If {A;}", is a partition of the sample space (mutually exclusive
and ezhaustive events) and P(B) > 0, then

P(B) = > B(B | A)B(A).
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Proof. Using Theorem 3 in Topic-2 notes, we have
P(B) =Y P(BNA)).
i=1
Next using Lemma [I} we have P(B N 4;) = (B | A;)P(A;). Consequently,

SOBBAA) =3 BB | AJP(A).

Theorem 2 (Bayes’ rule or Bayes’ theorem). For events A and B with P(B) > 0,

P(B | A)P(A)

P(A] B) = =5

More generally, if {A;}1, is a partition of the sample space (mutually exclusive and exhaustive events),
then for any event B with P(B) > 0,

P(B | Ap)P(Ay)
P(Ax | B) = S P(B | A)P(A)

Remark 2. Here P(A; | B) is known as posterior probability; “posterior” means after updating based on
the evidence.
Proof. By definition of conditional probability,

P(AN B)

P(A| B) = 55 1)

provided P(B) > 0. From Lemmall] we have P(AN B) =P(BNA) = P(B | A)P(A)

_P(ANB) _ P(B|AP(A)
PAID =@ =~ ®)

This completes the proof of the first statement.
Second part: Collection {A4;}7; is a partition of the sample space, that is, |J;_, A; = Q and A, N A; =0
for i # j. If P(B) > 0, the law of total probability gives:

P(B) = ZP(B | Ai)P(Ai)'

Thus, for any Ay,
y BB - P(Ak N B) B ]P’(B | Ak)P(Ak>
(Ax | B) = P(B) Y.L P(B|A)P(A)

This establishes the general form of Bayes’ theorem. O




Venn Diagram Illustration

The diagram helps visualize how P(A N B) relates to P(A) and P(B), which is central to understanding
Bayes’ theorem.

In the diagram, the intersection A N B is the region where the circles overlap, representing the joint
event. Bayes’ theorem relates the conditional probabilities by using this intersection and the marginal
probabilities P(A) and P(B).

r

Example 4. Consider a disease affecting 1% of a population (P(D) = 0.01). A test is 99% accurate:
P(T* | D) = 0.99 (true positive) and P(7T~ | D) = 0.99 (true negative), so P(T" | D) = 0.01 (false
positive), with P(D¢) = 0.99.

To find P(D | T"), first we compute the probability of having the disease given a positive test:

P(T+) = B(T* | D)P(D) + P(T" | D°)P(D*) = (0.99)(0.01) + (0.01)(0.99)
= 0.0099 + 0.0099 = 0.0198.

Now,
P(T* | D)P(D)  (0.99)(0.01) 0.0099

P(T+) ~0.0198  0.0198

Thus, there is a 50% chance of having the disease given a positive test, highlighting the impact of
the low prior probability P(D).

P(D|T") = 0.5.

Example 5. Two fair dice are rolled independently. Let A = {Sum of dice roll is 6}, B =
{outcome on first die is 4}, and C' = {Sum of dice roll is 7}.

1. Check whether A and B are independent events.
2. Check whether C' and B are independent events.

You will find that the events A and B are dependent (not independent), but the events C' and B are
independent. Can you explain why?

Solution: The outcomes where the sum is 6 are: (1,5),(2,4),(3,3),(4,2),(5,1). There are 5 out-

comes, SO




The outcomes where the first die is 4 are: (4,1),(4,2),(4,3),(4,4),(4,5),(4,6). There are 6 outcomes,

SO 6 1
P(B) = — = =.
36 6

The intersection A N B is the event where the first die is 4 and the sum is 6. The only outcome is
(4,2), since 4 + 2 = 6. Thus,

1
P(ANB)=—.
( )= 3¢
To check independence, compute:
5 1 5
P(APB)= — - - = —
(A)P(B) 36 6 216
Since
PANB) = — = > 2+ ° _ payp(B)
36 2167 216 ’

the events A and B are not independent, so they are dependent.
Alternatively, compute the conditional probability:
P(ANB) 1/36 1

P(A]B) = P(B)  1/6 6

Compare with P(A):
3 1
P(A)=—#-=P(A| B).
W=221_palp
Since P(A | B) # P(A), the occurrence of B affects the probability of A, confirming dependency.
Next, the outcomes where the sum is 7 are: (1,6),(2,5),(3,4),(4,3),(5,2),(6,1). There are 6 out-

comes, SO
6 1
P(C)=—==-.
(©) 36 6
The intersection C'N B is the event where the first die is 4 and the sum is 7. The only outcome is

(4,3), since 4 +3 = 7. Thus,

1

Compute:

Since

P@ﬂBﬁi%:P@W@L

the events C' and B are independent.
Compute the conditional probability:

_P(CNB) 1/36 1
PC]B) = P(B)  1/6 6
Since |

P(C) = < =PF(C| B),




the occurrence of B does not affect the probability of C, confirming independence.

The events "sum of dice roll equals 6” and "first die equals 4”7 are dependent because knowing the
first die is 4 changes the probability of the sum being 6 from 5/36 to 1/6. In contrast, the events
"sum of dice roll equals 77 and "first die equals 4” are independent because the probability of the
sum being 7 remains 1/6 regardless of whether the first die is 4.

Lemma 2. Pairwise independence does not imply mutual independence.

Proof. We prove this by using a counterexample. Let (£2,C,P) be a probability space, where 0 =

{1,2,3,4}, C =2 and
1/4 ifz=1,2,3,4
P({z}) = { o

otherwise.

Consider events Ey = {1,2}, Ey = {2,3}, and E3 = {1,3}. Then,

o P(EY) =P(E,) =P(E3) =1/2

e P(EyNE,)=P(E;NE3)=P(E;NE3) =1/4

o P(E) N Ey) =P(E)P(E,), P(Ey N E3) = P(E)P(E;s), and P(Ey N E3) = P(Ey)P(E3)

e P(EyNEyN Es) =P(0) =0 # P(E,)P(Ey)P(E3).
Therefore, events Ey, Fy, and F3 are pairwise independent but not mutually independent.
Theorem 3. If A and B are independent events then

1. A€ and B are independent events;
2. A and B¢ are independent events;

3. A€ and B¢ are independent events.

Proof. We prove part 1 only; others similarly follow. Observe that,

P(A°N B) =P(B) —P(AN B)
= P(B) — P(A)P(B), because A and B are independent
= P(B)(1 - P(4))
= P(B)P(A°), because P(A°) =1 —P(A).

Therefore, A° and B are independent events.

Theorem 4. If A, B and C' are independent events then A¢, B and C are independent events.

Proof. Observe that,

P(A°NBNC)=PA°N(BNC)), using associative law of intersection
P(A°)P(B N C), using independence of A and BN C, and Theorem 1
= P(A°)P(B)P(C).

Therefore, A°, B and C' are independent events.



Conditional probability measure

Definition 5. Let (£2,C,[P) be a probability space. The conditional probability measure with respect to
event B € C where P(B) > 0 is a function Pg(A) =: C — [0, 1] defined by

P(AN B) for all A € C.

Pp(A) =P(A | B) = TPB)

Pg is known as a conditional probability measure on (£2,C), and (£2,C,Pg) is known as the corresponding
conditional probability space.

Theorem 5. A conditional probability measure is a probability measure.

Proof. We assume the setup in the above definition. To complete the proof, we need to verify three
axioms. Verifications of the first two axioms are straightforward.

Axiom 1 (Non-negativity) Pg(A) =P(A | B) = (?OB) > 0 for all A € C; non-negativity holds.

Axiom 2 (Normalization) Pg(Q) =P(Q | B) = PEP{E;J)B) = % = 1; normalization holds.

Axiom 3 (Countable additivity) Consider a collection of pairwise disjoint events {A4;}2, C C (ie., A;NA; =0

for i # j),
- - P (Ui, 4:) N B)
Pgp (UA1>:P(UA1'|B>: IP’(B)
i=1 i=1
P2 (A NB
= <UZIE}>((BZ) nB)) , using distributive property of intersection over union.

Now, for i # j, A; N'A; = 0 implies that (4; N B)N(A; N B) =0 for i # j. So, {A; N B}, CCis

a collection of pairwise disjoint events. Consequently, the third axiom for probability space (£2,C,P)

gives
P(UAmB) Z]P’A NB).
1=1

Substituting the above in the first expression, we have

IP’B(UA) Z“PAHB PgmB Z]P’B

=1

So,

Pp (G Ai) = iPB(A )

Consequently, the third axiom also holds.

Therefore, all three axioms for probability measure are satisfied by the conditional probability measure, so
a conditional probability measure is a probability measure. O



Multiple conditioning:
Theorem 6. For events A, B and C with P(AN B) > 0,

P(CNA|B)

PCIANB) = =g

Proof. First notice that P(A) > P(AN B) > 0 and P(B) > P(AN B) > 0. Using the definition of

conditional probability,

_P(CNANDB)
Using Lemma 1, we have
P(CNANB)=P(CNA|B)PB) and P(AN B) =P(A | B)P(B).

Substituting in the first expression, we obtain

P(CNANB) P(CNA|B)

PICTANB) = —panE ~ P@A[B)
U
Lemma 3. For three events A, B and C with P(A) > 0, P(B) > 0 and P(C) > 0, we have
P(ANBNC)=P(A| BNC)P(B|C)P((C).
Proof. Consider D = BN C as an event, and applying Lemma 1, we have
P(ANBNC)=P(AND)=P(A| D)P(D).
Putting D = BN C we get
P(ANBNC)=PA|BNC)P(BN(C).
Again applying Lemma 1 for P(B N C) and putting in the above expression we get
P(ANBNC)=P(A| BNnC)P(B|C)P(C).
O

Theorem 7 (Chain rule). Let Ay, Ay, ..., A, be the events such that P(A;) >0 for 1 <i <n. Then,

P(A N AN ... N Ap)
= P(A | AN NA)P(Ay [ A5 N A)P(As | AN N A) . P(Any | Ay) P(A,).



Monte Hall problem

A contestant is presented with three closed doors. Behind one of the doors is a car, and behind the other
two doors are goats. The contestant initially selects one door at random.

After the initial choice, the host, who knows what is behind each door, opens one of the remaining two
doors and reveals a goat. The host always opens a door with a goat and never opens the door chosen by
the contestant.

The contestant is then given the option to either stay with the originally chosen door or switch to the
other unopened door.

1. What is the probability of winning the car if the contestant stays with the original choice?

2. What is the probability of winning the car if the contestant switches to the other unopened door?

Solution:

Let’s formalize this using probability. Assume the contestant always picks Door 1, and the car is equally
likely to be behind any door, with probability % The host opens a door revealing a goat (Door 2 or Door
3), and we calculate the probability that the car is behind Door 1 (stay) or Door 3 (switch, assuming the
host opens Door 2).

Define events:

e C;: The car is behind Door i (i = 1,2,3), with P(C;) = 3.

e [y: The host opens Door 2, revealing a goat.

We want to compute:

e P(Cy|H;): Probability the car is behind Door 1 given the host opens Door 2 (stay).

e P(C3|H;): Probability the car is behind Door 3 given the host opens Door 2 (switch).
Using Bayes’ theorem, for P(C,|H,):

H,|Cy)P(CY)
P(H,)

P(01|H2) N P(

Step 1: Compute probabilities.
[ ] P(Cl) = %

e P(H,|Cy): If the car is behind Door 1, the host chooses between Door 2 and Door 3 (both have goats)
randomly, so P(H,|Cy) = 1.

e P(H,|Cy): If the car is behind Door 2, the host cannot open Door 2 (it has the car), so P(H3|Cy) = 0.

e P(H,|Cs): If the car is behind Door 3, the host must open Door 2 (Door 1 is chosen, Door 3 has the
car), so P(Hs|C3) = 1.
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Step 2: Compute P(H,).

P(H,) = P(H,|Cy)P(Cy) + P(Hs|C2)P(Cy) + P(Ha|Cy) P(Ch).

1 1 1 1 1 1 1
ren = (55) + (03) + (13) =570 3=5

Step 3: Compute P(C}|Hs).

P(Hy|C)P(Cy)  3-35 &+ 1
(C1|H>) P(H,) % % 3
Step 4: Compute P(Cs|Hs).
P(H;|C3)P(C3) 1- % % 2
(Cs|H>) P(H>) % % 3

Thus, staying with Door 1 gives a % chance of winning, while switching to Door 3 gives a % chance.
Tree diagram of probability path is as follows:
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