CML101: Tutorial 3-Quantum Chemistry

UG Semester - I (2023-24)
Q1: Consider a particle of mass 100 g can be located within a distance range 10^{-8} cm . What is the uncertainty in its velocity measurement? Do the same exercise for an electron with mass $\sim 10^{-27} \mathrm{~g}$. Compare and rationalize the uncertainty values.

Q2: Photochemical studies with a sodium surface resulted the following data, Wavelength $(\AA): \quad 3125 \quad 3650 \quad 4047 \quad 4339 \quad 5461$ Retarding potential (Volts): - $0.382 \quad-0.915$-1.295 $-1.485 \quad-2.043$
Calculate the work function and the Planck's constant. You can take the help of a graphical method.

Q3: The work function (ϕ) for Cesium is $3.43 \times 10^{-19} \mathrm{~J}$. What is the kinetic energy of an electron released by radiation of 550 nm ? What is the stopping voltage (V) ? How many photons are absorbed if the total energy supplied to the surface at the same wavelength is $1.00 \times 10^{-19} \mathrm{~J}$?
$\left[\mathrm{V}=\frac{K E_{\max }}{e}\right.$, Charge of an electron (e) is $\left.1.602 \times 10^{-19} \mathrm{C}\right]$

Q4: Calculate the wavelength of (i) a 65 g tennis ball served at a velocity of 100 mph , and (ii) an electron ejected from an atom with kinetic energy 2.5 eV . What inference you draw from the calculated wavelengths of the two objects?
$\left[100 \mathrm{mph} \approx 45 \mathrm{~m} \mathrm{~s}^{-1}\right.$ and $\left.1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}\right]$

Q5: Assume a wave function has the following form, $\psi(x)=N\left(a^{2}-x^{2}\right)$ Find out it's normalization constant N if the function is bound between -a to +a .

Q6: Which of the functions (i) sinkx, (ii) $5 \mathrm{x}^{2}$, (iii) $1 / \mathrm{x}$, and (iv) $5 \mathrm{e}^{-5 x}$ are eigenfunctions of $\frac{d^{2}}{d x^{2}}$? Find out the eignevalues.

Q7: Evaluate the commutators

$$
\left[x, \frac{d}{d x}\right],\left[\frac{d}{d x}, \frac{d^{2}}{d x^{2}}\right],\left[3 x^{2}, \frac{d}{d x}\right],\left[\frac{d}{d x}-x, \frac{d}{d x}+x\right]
$$

Q8: Show that, $\left[\hat{x}, \hat{p}_{x}\right]=i h / 2 \pi$
What is the significance of this outcome?

Q9: Consider a function $\psi=\mathrm{Nx}(\mathrm{l}-\mathrm{x})$ confined in a box of length $(0,1)$, where N is the normalization constant. Find the average kinetic energy of the particle.

Q10: A wavefunction of a particle in a 1D box is given as,

$$
\psi(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{\pi x}{L}\right)
$$

(i) Find $\langle x\rangle$ and $\left\langle x^{2}\right\rangle$ for a particle of mass m in the ground state of a box of length L .
(ii) The technical definition of uncertainty is

$$
\Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}
$$

What is Δx for the ground state in a box?

Q11: For an electron in a 1-D box of length $2.0 \AA$
(i) Calculate the energy difference between $n=2$ and $n=3$ levels.
(ii) Calculate the wavelength of the photon corresponding to a transition between these two energy levels.
(iii) In what part of the electromagnetic spectrum will this wavelength be?

Q12: The generalized wavefunction of a particle in a 1D box is given as,

$$
\psi(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right)
$$

Show that the wavefunctions $\psi_{n=1}$ and $\psi_{n=2}$ are orthogonal to each other.

Q13: Consider a particle in its ground state confined to a 1-D box in the interval $(0,8)$. What is the probability of finding the particle in between [$4-\mathrm{d} / 2$ to $4+\mathrm{d} / 2$] where d is very small so that function can be taken as constant?

Q14: What is the degeneracy of the energy level which has three times energy than that of the lowest energy level in 3-D box?

