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Let X be a random variable with a known probability distribution (either a Probability Mass
Function (PMF) for discrete variables or a Probability Density Function (PDF) for continuous
variables), and let Y = ¢g(X) be a new random variable.

e In practice, transformations arise in almost every branch of study. A popular example is
Body-Mass-Index (BMI), which is defined as

weight in KG

BMI =
(height in meter)?

e Simple example: If X is the result of rolling a die, Y = (X — 3)? is another random variable
defined from X.

How do we find the probability distribution of ¥ = ¢(X)?

Transformation of Discrete Random Variables

Let X be a discrete random variable with a PMF px(z). If we define a new random variable

Y = g(X), its PMF py(y) is found by summing the probabilities for all values of X that map to a
specific value of Y.

priy) =PY =y)= > px(x)

{z:g9(z)=y}

Example 1 (Discrete transformation). Let X be the outcome of a fair die roll, so px(z) = 1/6
for x € {1,2,3,4,5,6}. Let Y = (X — 3)%. We find the PMF of Y.

e Y =0: Occurs when X = 3; py(0) = px(3) = 1/6.
e Y =1: Occurs when X =2 or X = 4; py(1) = px(2) + px(4) = 1/6 +1/6 = 1/3.
e Y =4: Occurs when X =1 or X =5; py(4) =px(1) +px(5) =1/6 +1/6 = 1/3.

e Y =9: Occurs when X =0 or X = 6; py(9) = px(0) +px(6) =0+1/6 =1/6.
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Thus the PMF of Y is

(1/6 y =0,

1/3 y=1,
py(y)=q1/3 y=4,

1/6 y=09,

0 otherwise.

CDF Method (General Approach)

The CDF method works for both discrete and continuous random variables, especially when g is
not one-to-one. Steps of this method are as follows:

1.
2.

Define Fy (y) = P(Y <y) =P(g(X) < y).
Express the event {g(X) < y} in terms of X.

Evaluate using Fx (the distribution function of X), by solving the inequality for X in terms
of y. This might require considering different cases if ¢ is not one-to-one.

. If Y is discrete, identify mass points using jump points in the CDF and compute them.

. If Y is continuous, differentiate to obtain fy (y).

Example 2 (Transformation of a die roll). Let X be a fair die outcome, px(z) = 1/6 for
r=1,2,3,4,5,6. Define Y = (X — 3)%. Then,

Y=9&< X =6.
Thus the CDF of Y is
(IF’(Q)): y <0,
IP’(X: )—1/6 0<y <1,
Fy(y) =P(Y <y) = P(X € {2,3,4}) = 3/6, 1<y<d4,
P(X €{1,2,3,4,5}) =5/6, 4<y<9,
|P(X €{1,2,3,4,5,6}) =1, y=>09.

The CDF plot is

Y=0& X =3,
Y=1&X=2o0r4,
Y=4& X =1 or b5,
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Fy(0) —lim Fy(0-) =1/6 —0=1/6  y=0,

Fr() = limFy(1-) =3/6 —1/6 =1/3 y=1,
py(y) = { Fy(4) — lim Fy(4—) = 5/6 — 3/6 = 1/3 y =4,

Fr(9) —limFy(9—)=1-5/6=1/6 y=09,

L0 otherwise.

with PDF fx(z) = 1z for 0 < z < 2. We want to find the PDF of Y = X2

o CDF of X: Fx(z) = [y dtdt = [5] == for0 <z <2,
0

e CDF of YV:
Fy(y) =P(Y <y) =P(X*<y).

Since X > 0, we have X < ,/y. The support of Y is y € (0,4).

Fy(y):IP’(XS\/Q):FX(\/Q):<\2§) :% for 0<y<4.

e Differentiating CDF to find the PDF of Y:

d d ry 1
fr(y) = d_yFY(y) = d_y <Z> =1 for 0<y<4.

This shows that Y is a uniform random variable on the interval (0,4), i.e.,

Y ~ Uniform(0,4).

Example 3 (Squaring a continuous random variable). Let X be a continuous random variable




Transformation of Random Variables Rahul Singh

One-to-One Continuous Transformation

When the transformation Y = g(X) is a one-to-one monotonic function, we can use the following
formula directly to find the PDF of Y.

() = fx(g7'(v)) 'd%g‘l(y)'

where g~!(y) is the inverse function of g(z).

Example 4 (Transformation of an Exponential distribution). Let X ~ Exp()), with PDF
fx(x) = Xe ™ for > 0. Let Y = 3X. Find the PDF of Y.

e The transformation is

g(x) = 3.
e The inverse is
9 ' (y) =y/3
e The derivative of the inverse is
3 “L(y) = L
dyg D=

e The PDF of Y is:

_ Aoy

3

W

fr(y) = fx(y/3) - ‘%‘ — \e—MW/3) .

This shows that Y is also exponentially distributed, with rate parameter A\/3, i.e.,
Y ~ Exp(\/3).

Method of Moment Generating Functions (MGF)

For a sum of independent random variables, the MGF of the sum is the product of the individual
MGPFs, that is, if X1,..., X, are independent RVs and Y = X; + --- 4+ X, then

My(t) = MX1+~~~+Xn (t) = H MXi(t)’

So, the steps involved are
1. Identify the MGF of each independent random variable.
2. Multiply the MGFs to find the MGF of the sum.

3. Identify the distribution corresponding to the resulting MGF.

Example 5 (Sum of Poisson random variables). Let X; ~ Poisson(A;) and X5 ~ Poisson(\)
be independent random variables. Find the distribution of Y = X; + X,.
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1. The MGF of a Poisson variable is Mx(t) = e} ~1.
2. The MGF of Y is the product of the MGF's of X; and Xs: My (t) = Mx, (t) - Mx,(t) =

6)\1(et71) . e)\z(etfl) — 6(}\1+)\2)(et71).

3. This is the MGF of a Poisson distribution with parameter A = \; + Ay. Thus, ¥ ~
Poisson(\; + A2).

Multivariate Transformations (optional)

For a random vector X = (Xj,...,X,) with joint PDF fx(x), and a one-to-one transformation
Y = ¢(X), the joint PDF of Y is given by:

F(y) = fx(g ' (y)) - /]

where J is the Jacobian determinant of the inverse transformation X = g='(Y).

Ozy ., Oz
oy1 OYn
J=det | : :
Ozn ., Ozn
ayl 6yn

Example 6 (Sum and Difference of Normal variables). Let X3, Xo ~ N(0, 1) be independent.
Find the jOiIlt PDF of Y1 = X1 + X2 and }/2 = X1 — X2.

1. The joint PDF of X, X5 is

1
fX1,X2("L‘17x2) = 9 6_%(x%+$%)°
T

2. The inverse transformation is

1 1
T = §(y1 +1y2) and x9 = 5(91 —Y2).

3. The Jacobian determinant is

1=\t = |- e -amam =

4. The joint PDF of Y}, Y5 is:

Yi+Y2 Y1 — Yo 1 _af(utue)?, (m-w)?] 1
fY1,Y2(y1,Z/2> - le,XQ( 9 9 5 )|J| = %e 2|:< 2 ) ( 2 ) ] . E
So,
2 2 2 2
=L y1+2y192+y2+y172y192+y2 1 e
thYz(yl?y?) - Ee 2[ * 4 } = Ee 4(y1+yz)'

This can be factored into two independent normal distributions, N (0, 2).
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Example 7. Let X7, X5 be IID standard normal variables, and consider the polar coordinate

transformation: e
Y) =1/X?+ X2 and Y;= arctan (f)

1

The inverse transformation is
X; =Yicos(Ys) and X, =Y;sin(Ys).

The Jacobian determinant is

or1 Oz .
_ o 0w | — cos(ya) —yrsin(y2)) _ 2 90\
J = det (% o > det (Sm@?) gy cos(yy) ) = Y1608 (82) T yrsin®(ye) =

Using the transformation formula and the fact that

1 2 2
le,XZ (Z‘l, ZEQ) — %6_2(331"!‘272)7

we get the joint PDF of Y] and Y5:

L 3 eostua) P+ sin()?) . |y | = L =d02 Ly,

fY17Y2 (y17y2) = 27T 271-

This factorization shows that Y; and Y5 are independent, and reveals their respective distri-
butions.

Order Statistics (Optional)

In statistical analysis, it is often useful to arrange a sample of random variables in ascending order.
The resulting ordered variables are known as order statistics. Order statistics are fundamental in
non-parametric statistics and provide a basis for robust estimation and outlier detection. They
allow us to analyze quantities like the minimum, maximum, median, and percentiles of a sample,
which are often of greater interest than the average value.

Definition 1 (Order Statistics). Let X, Xs,..., X, be a random sample of n independent and
identically distributed (IID) random variables from a continuous distribution with cumulative dis-
tribution function (CDF) Fx(z) and probability density function (PDF) fx(z). Let these random
variables be sorted in non-decreasing order:

X = X < < Xy
The variable X, is called the r-th order statistic.

Remark 1. For a continuous distribution, the probability that any two observations are equal is
zero, so with probability 1 we have X1y < X < -+ < X(,). The discussion of order statis-
tics focuses mainly developed for continuous random variables, so henceforth we assume RVs are
continuous.
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Distributions of Extremes (Minimum and Maximum)

The most straightforward order statistics are the minimum, X(;), and the maximum, X(,). Their
distributions are simple to derive using the CDF method.

CDF and PDF of the Maximum X,

The event {X(,) < x} occurs if and only if all of the random variables X;,..., X,, are less than or
equal to z. Due to the independence and identical distribution of the random variables, the CDF
of X (n) is:

Fx, (@) =P(X@ <2) =P(X; <w,...,X, <2) = [[PX; < 2) = [Fx(2)]"

i=1
The PDF is found by differentiating the CDF using the chain rule:
d n—1
Fxw (@) = P, () = n[Fx(2)]"" fx(2)
CDF and PDF of the Minimum Xy

The event {X(1) > '} occurs if and only if all of the random variables Xi,..., X, are greater than
x. Therefore, we can express the CDF of X(;) as:

Fx, (1) =1-P(Xqy>2) =1-P(X; >x,... . X, >2) = 1= [[P(X; > 2) =1 = [1 = Fx()]"
i=1
The PDF is found by differentiating;:

fxoy (@) = %Fxm(@ = —n[l — Fx(@)]"" (= fx(2)) = n[l = Fx(2)]" " fx(z)

PDF of the r-th Order Statistic X,
The PDF of the r-th order statistic X, is given by:

n! MO AT
T @ = P ()

fX(r)<x> =
This formula can be understood intuitively:

e fx(z)dz: The probability that one of the random variables falls in a small interval around z.

e [Fx(z)]""!: The probability that r — 1 variables are less than .

[1 — Fx(x)]" ": The probability that n — r variables are greater than x.

° #&Hﬂ), The number of ways to choose which variables are less than z, which one is at x,
and which are greater than .
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Example 8 (Median of a Uniform Distribution). Let X, X5, X5 be IID U(0,1). The PDF
and CDF are fy(x) = 1 and Fx(z) = = for 0 < x < 1. We want the distribution of the
median, X ). Using the formula for r = 2,n = 3:

3!

e g LA =6z1-2), 0<o<1

fX(z) (f) =

This is the PDF of a Beta(2,2) distribution.

Joint PDF of Two Order Statistics X(,) and X,
For 1 <r < s < n, the joint PDF of X,y and Xy is:

i [Fx @) [Fx ()= Fx (@) 1= Fx ()] fx (@) fx ()

mevX(s) (z,y) = (r=1Dl(s—r—=1)(n—s)!

This formula helps derive the distributions of other useful statistics like the sample range, R =
Xm) — Xq.-
Applications of Order Statistics

Order statistics have broad applications across various fields due to their robustness and direct
connection to data ranking.

1. In reliability engineering, products are tested to determine their lifetime, often following an
exponential or Weibull distribution. Order statistics are used to analyze these failure times.

Example 9 (System Lifetime in Life Testing). A system is composed of n = 5 identical
components. The lifetime of each component is exponentially distributed with a mean
of 1000 hours.

(a) Series System (Weakest Link): The system fails if any one component fails.
The lifetime of the system is the minimum of the component lifetimes, X (). For
an exponential distribution with rate A = 1/1000, we have Fx(z) =1 — e 2.

fX(1)(x) = 5[1 - (1 - 6_)@)]4)\6_>\x = H5le™

The system lifetime is exponentially distributed with rate 5\. The expected life-
time is 1/(5\) = 1000/5 = 200 hours. This illustrates how a complex system can
be significantly less reliable than its individual components.

(b) Parallel System (Redundancy): The system fails only when all components
have failed. The lifetime of the system is the maximum of the component lifetimes,
Fx)(@) = [Fx (@)’ = (1 - e™)°

Fxep (@) = 5(1 — e7) he™

The expected lifetime of the parallel system is E[X(5)] = [~ 5z(1—e ") Ae M dx,
which is significantly greater than the single component lifetime.
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2. Order statistics are a cornerstone of statistical process control, which monitors manufacturing
processes to ensure quality standards.

Example 10 (Detecting Outliers in Manufacturing). A company produces parts with a
target weight of 5 grams and a standard deviation of 0.01 grams, assumed to be normally
distributed. To check for a quality problem, they take a sample of n = 25 candies. If the
range of the sample, X5y — X(1), is too large, it may indicate an issue with the process.
Using the joint PDF of the extremes, one can calculate the probability of observing
a certain range under normal conditions and set a control limit. If a sample’s range
exceeds this limit, a quality investigation is triggered.

3. Extreme order statistics are essential for studying extreme weather events, such as floods,
droughts, and heatwaves.

Example 11 (Modeling Environmental Extremes). Consider the annual maximum river
levels over a period of n years. The maximum river level each year can be modeled as
an IID random variable. The annual maximum over n years is then the maximum
order statistic X(,) of these measurements. Extreme value theory, a branch of statistics
heavily reliant on order statistics, is used to model and predict the probability of rare,
catastrophic events like floods. These models inform the design of infrastructure like
dams and levees.

4. In finance, order statistics are used to analyze extreme events, such as maximum losses or
minimum asset values, which is crucial for risk management.
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