CML101: Tutorial 3-Quantum Chemistry
 UG Semester - I (2023-24)

Q1: Consider a particle of mass 100 g can be located within a distance range 10^{-8} cm . What is the uncertainty in its velocity measurement? Do the same exercise for an electron with mass $\sim 10^{-27} \mathrm{~g}$. Compare and rationalize the uncertainty values.

Ans: Uncertainty principle, apply $\Delta x . \Delta p_{x}=\Delta x .\left(m \Delta v_{x}\right)=h / 4 \pi$

Q2: Photochemical studies with a sodium surface resulted the following data,
Wavelength $(\AA): \quad 3125 \quad 3650 \quad 4047 \quad 4339 \quad 5461$

Retarding potential (Volts): - $0.382 \quad-0.915$-1.295 $-1.485 \quad-2.043$
Calculate the work function and the Planck's constant. You can take the help of a graphical method.

Ans: Photoelectric effect: $\quad K E_{\text {max }}=e V_{\text {stop }}=E_{\text {photon }}-\phi$;

$$
E_{\text {photon }}=h c / \lambda
$$

Q3: The work function (ϕ) for Cesium is $3.43 \times 10^{-19} \mathrm{~J}$. What is the kinetic energy of an electron released by radiation of 550 nm ? What is the stopping voltage (V) ? How many photons are absorbed if the total energy supplied to the surface at the same wavelength is $1.00 \times 10^{-19} \mathrm{~J}$?
$\left[\mathrm{V}=\frac{K E_{\text {max }}}{e}\right.$, Charge of an electron (e) is $\left.1.602 \times 10^{-19} \mathrm{C}\right]$

Ans: Photoelectric effect: $\quad K E_{\text {max }}=e V_{\text {stop }}=E_{\text {photon }}-\phi$

$$
\begin{aligned}
& V_{\text {stop }}=K E_{\max } / e=0.115 \mathrm{~V} \\
& E_{\text {photon }}=N h \nu \\
& N=2.767 \times 10^{15}
\end{aligned}
$$

Q4: Calculate the wavelength of (i) a 65 g tennis ball served at a velocity of 100 mph , and (ii) an electron ejected from an atom with kinetic energy 2.5 eV . What inference you draw from the calculated wavelengths of the two objects?
$\left[100 \mathrm{mph} \approx 45 \mathrm{~m} \mathrm{~s}^{-1}\right.$ and $\left.1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}\right]$

Ans: Wave-particle duality, de Broglie:

$$
\lambda=\frac{h}{m v}=2.3 \times 10^{-34} \mathrm{~m} \text { for the tennis ball and } 0.77 \mathrm{~nm} \text { for the electron }
$$

Q5: Assume a wave function has the following form, $\psi(x)=N\left(a^{2}-x^{2}\right)$ Find out it's normalization constant N if the function is bound between -a to +a .

Ans: Normalization

$$
\begin{aligned}
& \int_{-a}^{a} \psi^{*} \psi d x=1 \\
& \int_{-a}^{a} N^{2}\left(a^{2}-x^{2}\right)^{2} d x=1 \\
& N^{2}\left(\frac{16 a^{5}}{15}\right)=1 \\
& N=\sqrt{\frac{15}{16 a^{5}}}
\end{aligned}
$$

Q6: Which of the functions (i) sinkx, (ii) $5 \mathrm{x}^{2}$, (iii) $1 / \mathrm{x}$, and (iv) $5 \mathrm{e}^{-5 x}$ are eigenfunctions of $\frac{d^{2}}{d x^{2}}$? Find out the eignevalues.

Ans: Operators, Eigenvalue equations:

$$
\frac{d^{2}}{d x^{2}} \sin (\mathrm{kx})=-\mathrm{k} \sin (\mathrm{kx})
$$

Q7: Evaluate the commutators

$$
\left[x, \frac{d}{d x}\right],\left[\frac{d}{d x}, \frac{d^{2}}{d x^{2}}\right],\left[3 x^{2}, \frac{d}{d x}\right],\left[\frac{d}{d x}-x, \frac{d}{d x}+x\right]
$$

Ans: Operators and commutators:

$$
\begin{aligned}
& {[\hat{A}, \hat{B}]=\hat{A} \hat{B}-\hat{B} \hat{A}} \\
& {\left[x, \frac{d}{d x}\right] \psi=x \frac{d \psi}{d x}-\frac{d(x \psi)}{d x}=-\psi} \\
& {\left[x, \frac{d}{d x}\right]=-1}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& {\left[\frac{d}{d x}, \frac{d^{2}}{d x^{2}}\right]=0} \\
& {\left[3 x^{2}, \frac{d}{d x}\right]=-6 \mathrm{x}} \\
& {\left[\frac{d}{d x}-x, \frac{d}{d x}+x\right]=-2 x^{2}}
\end{aligned}
$$

Q8: Show that, $\left[\hat{x}, \hat{p}_{x}\right]=i h / 2 \pi$
What is the significance of this outcome?

Ans: Operators and commutators: x and p_{x} do not commute, they cannot be measured simultaneously.

Q9: Consider a function $\psi=\mathrm{Nx}(\mathrm{l}-\mathrm{x})$ confined in a box of length $(0,1)$, where N is the normalization constant. Find the average kinetic energy of the particle.

Ans: Normalization

$$
\begin{aligned}
& \int_{-a}^{a} \psi^{*} \psi d x=1 \\
& \int_{0}^{l} N^{2} x^{2}(l-x)^{2} d x=1
\end{aligned}
$$

Evaluate: $N=\sqrt{20 / l^{5}}$

$$
\begin{aligned}
& \langle K E\rangle=\int_{0}^{l} N x(l-x)\left(-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}\right) N x(l-x) d x \\
& \langle K E\rangle=\frac{5 \hbar^{2}}{m l^{2}}
\end{aligned}
$$

Q10: A wavefunction of a particle in a 1D box is given as,

$$
\psi(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{\pi x}{L}\right)
$$

(i) Find $\langle x\rangle$ and $\left\langle x^{2}\right\rangle$ for a particle of mass m in the ground state of a box of length L .
(ii) The technical definition of uncertainty is

$$
\Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}
$$

What is Δx for the ground state in a box?

Ans: (i) Expectation value:

$$
\begin{aligned}
\langle x\rangle & =\int_{0}^{L} \psi^{*} x \psi d x \\
& =\int_{0}^{L} \sqrt{\frac{2}{L}} \sin \left(\frac{\pi x}{L}\right) x \sqrt{\frac{2}{L}} \sin \left(\frac{\pi x}{L}\right) d x \\
& =\frac{2}{L} \int_{0}^{L} x \sin ^{2}\left(\frac{\pi x}{L}\right) d x \\
& =\frac{1}{L} \int_{0}^{L} x\left[1-\cos \left(\frac{2 \pi x}{L}\right)\right] d x \\
& =L / 2
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\left\langle x^{2}\right\rangle & =\int_{0}^{L} \psi^{*} x^{2} \psi d x \\
& =\frac{2}{L} \int_{0}^{L} x^{2} \sin ^{2}\left(\frac{\pi x}{L}\right) d x \\
& =\frac{1}{L} \int_{0}^{L} x^{2}\left[1-\cos \left(\frac{2 \pi x}{L}\right)\right] d x \\
& =\frac{L^{2}}{3}+\frac{L^{2}}{2 \pi^{2}}
\end{aligned}
$$

(ii) Calcualte Δx from the above data.

Q11: For an electron in a 1-D box of length $2.0 \AA$
(i) Calculate the energy difference between $n=2$ and $n=3$ levels.
(ii) Calculate the wavelength of the photon corresponding to a transition between these two energy levels.
(iii) In what part of the electromagnetic spectrum will this wavelength be?

Ans: (i) Particle in 1-D box:

$$
\begin{aligned}
& \Delta E=\frac{\left(n_{3}^{2}-n_{2}^{2}\right) h^{2}}{8 m L^{2}}=0.75 \times 10^{-19} \mathrm{~J} \\
& \lambda=h c / \Delta E=265 n m(U V)
\end{aligned}
$$

Q12: The generalized wavefunction of a particle in a 1D box is given as,

$$
\psi(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right)
$$

Show that the wavefunctions $\psi_{n=1}$ and $\psi_{n=2}$ are orthogonal to each other.

Ans: Orthogonality: $\quad \int \psi_{n=1} \psi_{n=2} \mathrm{dx}=0$

Q13: Consider a particle in its ground state confined to a 1-D box in the interval $(0,8)$. What is the probability of finding the particle in between [$4-\mathrm{d} / 2$ to $4+\mathrm{d} / 2$] where d is very small so that function can be taken as constant?

Ans: The wave function for a particle in a 1-dimensional box in its ground state:

$$
\psi(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{\pi x}{L}\right)
$$

Probability can be calculated as,
$\mathrm{p}=\psi^{*} \psi d x$
And the interval of interest: $\left[4-\frac{d}{2}, 4+\frac{d}{2}\right]$
The correct value of $\psi(4)$ is:

$$
\psi(4)=\sqrt{\frac{2}{8}} \sin \left(\frac{\pi \cdot 4}{8}\right)=\frac{1}{2} \cdot \sin \left(\frac{\pi}{2}\right)=\frac{1}{2}
$$

So, the probability of finding the particle in the interval $\left[4-\frac{d}{2}, 4+\frac{d}{2}\right]$ is:

$$
p\left(4-\frac{d}{2} \leq x \leq 4+\frac{d}{2}\right) \approx|\psi(4)|^{2} \cdot d=\left(\frac{1}{2}\right)^{2} \cdot d=\frac{1}{4} \cdot d=\frac{d}{4}
$$

Q14: What is the degeneracy of the energy level which has three times energy than that of the lowest energy level in 3-D box?

Ans: The lowest energy level is $3 h^{2} / 8 m L^{2}$
For a level having energy three times, $n^{2}=\left(n_{x}^{2}+n_{x}^{2}+n_{x}^{2}\right)=9$ with degeneracy $=$ $3,(1,2,2),(2,1,2),(2,2,1)$

