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Set Theory

We begin with a definition of a set and the basic notation we use to represent sets.
Definition 1. A set X is a collection of well-defined elements from a known universe.

The notation a € X denotes that a is a member of a set X. We use the notation a ¢ X to denote
that a is not a member of a set X.
Some standard and well-known sets:

e N: natural numbers
e 7. integers

e Q: rational numbers
e R: real numbers

In general, sets are denoted inside of curly braces {}. Let’s look at some examples of defining
sets. First, if possible, we could simply list all the elements in a set. Consider:

X ={2,4,6,8,10,12, 14, 16, 18, 20, 22}.

This tells us that X is the set whose elements are all the even numbers from 2 up to 22 (inclusive).
As noted, sets are unordered objects, so we could equally well have written

X ={2,10,18,4,12,20,6,14,22,8,16},

and the set X would be no different. In addition, each element of the universe is either in a set or
not; its inclusion is binary. Hence, listing elements more than once also does not change the set. So,
for example, we could write

X ={2,4,6,8,10,12, 14, 16, 18, 20, 22, 2, 4, 6,8, 10, 12, 14, 16, 18, 20, 22},

and the set X still is no different.
Two definitions:

Definition 2. The universe or universal set is a set containing all elements in the context; that is,
the set contains everything. It is usually denoted by €.

Definition 3. The empty set is a set containing no elements. It is usually denoted by (.



Now, suppose we wished to define a set Y containing all the even numbers from 2 up to 5274.
Obviously we would not like to list all these numbers! So we need a different way to describe Y.
One obvious approach is to write Y as

Y ={2,4,6,8,...,5274}.

In general, this is an acceptable description of Y, sometimes called an implied list. Also in general,
I would warn you to be careful with implied lists, as context always matters.
For example, in the above implied list, you expect your reader to make the assumption that the
. means to consider all even numbers up to 5274. However, perhaps what you really intended to
list is “all even numbers that are either powers of 2 or divisible by 3.” Or maybe what you are listing
is really “integers between 2 and 5274 that are not odd primes.” Certainly every number that is
written in this presentation of Y qualifies under either of these definitions, so it is of critical import
that your specific intention is clear from context here.

To avoid this kind of potential pitfall, we have yet another notation that can be useful to describe
sets, called set-builder notation. For set-builder notation, we describe a set in two parts: first, the
universe from which the numbers come, and second, the rules for belonging to the set. For example,
if we wanted to clarify that Y is all the positive even numbers up to 5274, we could write

Y ={zr €N |ziseven and z < 5274}.

Here, we see that the first part of the notation, x € N, describes where our numbers come from
(that is, the positive integers). The second part of our notation describes the rules for being a
member of Y: any member of Y must be even and no larger than 5274. The central bar in this
notation is sometimes written instead as a :, and is usually read as “such that,” so that speaking
this presentation, I would say “Y is the set of natural numbers z such that z is even and x is at
most 5274.”

Using set-builder notation, notice that the description to the right of the central bar is in fact
a proposition about z, that given a member of the range N can be true or false. In general, this is
how set-builder notation works. Given a proposition p(z), where z is a variable whose range is (2,
we write

X ={zecQ]p)}

to denote the set of elements in the universe €2 for which p(z) is true. Using this type of notation,
we have no ambiguity about what elements are in a set, since for each = € {2 we clearly either have
p(z) true or false.

Now, it is easy to see that:

e N=1{1,2,3,...}

e Z=1{.,-3,-2-1,01,23,...}

oQ:{mER|x:pWherep,qEZandq;&O}
q

1 Subset and superset

Definition 4. Let A and B be sets in universe 2. We say A is a subset of B if z € A then z € B.
We write A C B to denote that A is a subset of B. If A is a subset of B, we call B a superset of A,
and write B O A to denote that B is a superset of A.



Let’s take Y, as above, to be the set
Y ={x € N | zis even and x < 5274}.

Now, suppose that we wanted to isolate only those members of Y that are divisible by 3. We could
create a new set Z, explicitly to be a subset of Y, as

Z ={xz €Y | z is divisible by 3}.

Here, we have used the set Y as the range to consider when constructing the set Z, so only members
of Y can be elements of Z. By definition, we thus have Z C Y.
Let’s consider an example of showing one set is a subset of another, following this definition.

Example 1. Let X ={z € Z | ziseven} and let Y = {x € Z | x = 4k + 2 for some k € Z}.
Then Y C X.

Proof. Per the definition of subset, we wish to show that x € Y = z € X. We work by
direct proof.

Suppose z € Y, so that there exists k € Z such that = 4k + 2. Then = = 2(2k + 2), and
hence z is even. By definition, then, x € X. Therefore, x € Y = x € X, and thus Y C X. [J

We note, moreover, that by definition, ) C X and X C  for every set X.

We note that the symbol C is sometimes used in place of C to indicate that equality is impossible.
As with < and <, the difference between the two symbols is that in the latter case we allow the two
things being compared to be the same, and in the former we force that they are different.

To dig into this a little further, let’s consider what it means for two sets to be equal, and how
we could prove they are equal if in fact they are. We start with a perhaps trivial definition, which
we can then use to think about proof techniques for showing set equalities.

Definition 5. Let A and B be sets in universe 2. We say that A =B if AC B and B C A.

Example 2. Let
A={x €Z |z =4k + 3 for some k € Z},

and let
B={x€Z|x =4k —1 for some k € Z}.

Then A = B.

Proof. We show double containment, as described above.

First, to show that A C B, let x € A. Then there exists k € Z such that x = 4k + 3. But
then x = 4k 4+ 3 = 4(k + 1) — 1, and hence by definition « € B. Therefore, A C B.

For the other containment, let x € B. Then there exists k € Z such that x = 4k — 1. But
then x = 4k — 1 = 4(k — 1) + 3, and hence by definition x € A. Therefore, B C A. O

Finally, we note that in some cases, thinking about what the possible subsets of a given set might
look like can be interesting. We define this as follows:

Definition 6. Let X be a set. The power set of X, denoted by P(X) or 2% is the set whose elements
are all the possible subsets of X. That is to say, P(X)={A4| A C X}.



For example, if
X =1{1,2,3,4},

then we have
P(X) = {0, {1}, {2} {3}, {4}, {1, 2}, {1, 3}, {1,4},{2, 3}, {2, 4}, {3, 4}, {1, 2,3},

{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}}.

That is to say, P(X) is the set of all possible sets we can make out of the elements of X. Notice
that, as we discussed above, since ) C X, we must have () € P(X), and likewise X € P(X).

2 Set operations

Now that we have a sense of what sets look like, and how to think about subsets, let’s dive into the
kinds of operations we can do on sets.

Definition 7. Let A, B be sets. Define the intersection of A and B, denoted by A N B, to be the
set
ANB={z |z € Aand z € B}

If we think of A and B using set builder notation, as follows:

A=Az [p(x)}, B={r]q()}, (1)

then we have
ANB={z | p(z) and ¢(x)}.

Likewise,
Definition 8. Let A, B be sets. Define the union of A and B, denoted by A U B, to be the set

AUB={z |xr € Aor z € B}.

Indeed, if A and B are as in , then we have

AUB = {z | p(x) or q(x)}.

To ensure that AN B and AU B are understood, see the Venn diagram and caption in Figure
We shall occasionally use Venn diagrams to convey an understanding of sets and their relationships.
We easily obtain the following theorem:

Theorem 1. Let A, B,C be sets. Then
e AN(BUC)=(ANB)U(ANC), and
e AUBNC)=(AUB)N(AUCQC).
Next, we define set operations known as complementation.

Definition 9. Let A be a set in the universe ). The complement of A is denoted by Q \ A or A°
and defined by A°={z € Q |z ¢ A}

Indeed, if we allow the underlying universe to vary, we end up with a different understanding of
complement, known as the relative complement.



Figure 1: Imagine that the rectangle describes the possible universe €. If A is
the red set, and B is the blue set, then the purplish set where the
two overlap is AN B. The set A U B is all colored portions of the
diagram.

Definition 10. Let A, B be sets. The relative complement of B in A, denoted by A\B is the set
defined by
A\B={z |z € Aandz ¢ B}.

That is to say, the relative complement of B in A is the set of elements from A that do not
appear in B. This is sometimes read as “set minus,” that is, A\B is read as “A set-minus B.” A
warning here: there is no rule that B must be contained in A to “subtract” B from A. We just take
out whatever elements of B are there, and ignore the rest. So A\B = A\(A N B), since we only
concern ourselves with those members of B that are also members of A.

Since the operations of union, intersection, and complementation for sets have obvious connec-
tions to the operations of conjunction, disjunction, and negation for propositions, we immediately
obtain a version of De Morgan’s Laws for sets.

Theorem 2 (De Morgan’s Laws for Sets). Let A, B be sets in the universe Q. Then
e (AUB)¢ = A°NB°, and
e (ANB)*= AU B“.

Proof. To prove (AUB)¢ = A°NB¢, we need to show that (AUB)¢ C A°NB°and A°‘NB° C (AUB)“.

Part 1: (AU B)° C A°N B° Suppose z € (AU B)¢. This means z ¢ AU B. By the definition
of union, x ¢ A and = ¢ B. Thus, x € A° (since x ¢ A) and = € B¢ (since z ¢ B). Therefore,
x € A°N B¢ Hence, (AU B)¢ C A°N B°.

Part 2: A°NB°C (AUB)¢ Suppose x € A°N B¢. This means x € A° and x € B¢, so x ¢ A and
x ¢ B. Since z is not in A or B, x ¢ AU B, implying € (AU B)°. Thus, A°N B¢ C (AU B)“.
Since both inclusions hold, we conclude (AU B)¢ = A°N B°.

Next, to prove (AN B)¢ = A°U B¢, we show that (AN B)¢ C A°U B® and A°U B C (AN B)“.



Part 1: (AN B)¢ C A°U B¢ Suppose z € (AN B)°. This means x ¢ AN B. By the definition of
intersection, © ¢ AN B implies © ¢ A or x ¢ B. Thus, z € A° or € B, so x € A°U B°. Therefore,
(AN B)¢ C A°U B“.

Part 2: A°UB° C (AN B)¢ Suppose z € A°U B¢. This means z € A° or x € B¢, so x ¢ A or
x ¢ B. If v ¢ Aorx¢ B, then z cannot be in both A and B, so z ¢ AN B. Thus, z € (AN B).
Hence, A°U B¢ C (AN B)°. Since both inclusions hold, we conclude (AN B)¢ = A°U B°. O
Now, it is often the case that we wish to intersect or union more than just one set. To do so, we
recursively define the following notation:
Given sets Ay, Ao, ..., A, in a universe €2, define

k k—1
UAi:(ﬁifk<m; UAZ»: (UAZ)UAkikam, and

=m i=m i=m

k k k—1
() Ai = Qif k< m; ﬂAi:<ﬂAi>mAkifk:2m.

i=m i=m i=m
This notation is similar to the recursive notation we defined for summations and products in the
Induction notes. We note that under this definition, we can show the following:

Proposition 1. Let Aq, Ag,..., A, be sets in a universe 2. Then we have

o UAi:{x€Q|EIiwith1§i§n,:cEAi},and
i=1

. ﬂAi:{x€Q|Viwith1§i§n,xEAZ-}.
i=1

Here, we will prove the first statement, and leave the second as an exercise.

n

Proof. Let A1, Ay, ..., A, besetsin . We prove that U Ai={xeQ|Tiwithl <i<n, zeA}
i=1

by induction on n.

n
For the base case, when n = 1, we have that U A; = Ay. On the other hand, {x € Q| Fi with 1 <i <1, z €
i=1
A;} = Aj, since the only value i can take is 1. Hence, the result holds in the case that n = 1.

k
Now, let us suppose that for some k > 1, it is true that U Ai={reQ|Jiwithl<i<k, z€
i=1

A;}. Consider the case of k + 1. We have

k41 k

U A = U AiUAgky1  (by definition)

i=1 i=1
= {ze€Q|Fiwithl <i<k, xe€A}UAg1 (by the inductive hypothesis)
= {zeQ| I withl<i<k, € A;orzec Arr1} (by definition of union)

= {zeQ|Iwithl<i<k+1, €A} (sinceeach x isin oneof Aj,...,Ax orin Axyq).

Hence, the result also holds for & + 1.



n
By induction, then, for any choice of n, we have that U A;={zx € Q|Fiwithl<i<n,ze A}
. =1
We can use this more general definition of a multiway union/intersection to develop a more
sophisticated set of De Morgan’s Laws for sets. The proof of this theorem is a homework exercise,
but as with the first version of De Morgan’s Laws, it can proven in multiple ways. Induction is an
option, as is using Proposition [T] and showing double containment to demonstrate set equality.

Theorem 3 (De Morgan’s Laws for Sets, v. 2). Let Ay, Ag,..., A, be sets in the universe ). Then

Our final operation on sets to define here is the Cartesian product. This operation is a little
different, as the output of a Cartesian product does not live in the same universe as the original sets.

Definition 11. Let A, B be sets, from possibly different universes €1 and €25. Define the Cartesian
product of A and B, denoted by A x B, as the set

Ax B={(a,b) | a€ Aandbe B}

That is to say, the Cartesian product consists of all ordered pairs of elements, in which the first
element comes from A and the second element comes from B.

3 Cardinality

Definition 12. The cardinality of a set is a measure of the number of elements in the set. It is
denoted by |A| for a set A.

For finite sets, the cardinality is simply the count of elements. For infinite sets, cardinality is
determined by the existence of a bijection (one-to-one correspondence) with another set, such as the
natural numbers.

[ Example 3. For the set A = {1,2,3}, the cardinality is |A| = 3. ]

Definition 13. A set is finite if it contains a specific, countable number of elements (including
possibly zero elements).

The cardinality of a finite set is a non-negative integer.

Example 4. The set B = {a,b,c,d} is finite with cardinality |B| = 4. The empty set 0 is
also finite with cardinality |(| = 0.

Definition 14. A set is infinite if it is not finite, meaning it has an unbounded number of elements,
and no finite number can represent its cardinality.



Example 5. The set of natural numbers N = {1,2,3,... } is infinite because it has no upper
bound on the number of elements.

Definition 15. A set is countable if its elements can be put into a one-to-one correspondence with
the natural numbers N (i.e., it is either finite or has the same cardinality as N). Countably infinite
sets have cardinality denoted by Xy (aleph-null).

Example 6. The set of integers Z = {...,—2,—1,0,1,2,...} is countably infinite because it
can be listed as {0,1,—1,2,—2,...}, forming a bijection with N. Thus, |Z| = Ny.

Definition 16. A set is uncountable if it is infinite and its elements cannot be put into a one-to-one
correspondence with the natural numbers. Its cardinality is strictly greater than .

Example 7. The set of real numbers R is uncountable. Cantor’s diagonal argument shows
that no bijection exists between N and R, and its cardinality is denoted 2%, also known as
the continuum.

Theorem 4. The set of even numbers E = {2,4,6,...} is countable.

Proof. To show that E is countable, we define a function f : N — E by f(n) = 2n. We prove that
f is a bijection.
First, we check injectivity. Suppose f(n) = f(m). Then:

2n=2m — n=m.

Thus, f is injective.
Next, we check surjectivity. For any even number k € E, there exists n € N such that f(n) = k.
Since k is even, we can write k = 2n, so:

k
57
which is a natural number because k is even. Thus, f(n) = 2n = k, and f is surjective.
Since f is both injective and surjective, it is a bijection. Therefore, |E| = |N|, and the set of even
numbers is countable. g

Theorem 5. The set of odd numbers O = {1,3,5,...} is countable.

n =

Proof. To show that O is countable, we define a function g : N — O by g(n) = 2n — 1. We prove
that g is a bijection.
First, we check injectivity. Suppose g(n) = g(m). Then:

2n—1=2m—-1 — 2n=2m — n=m.

Thus, g is injective.
Next, we check surjectivity. For any odd number k € O, we need n € N such that g(n) = k. Set:

kE+1
gm)=2n—-1=k = 2n=k+1 = n:%.
Since k is odd, k4 1 is even, so % is a natural number. For example, if k = 3, then:
3+1
n:%:l and ¢(2)=2-2—-1=3.
Thus, g is surjective.
Since g is both injective and surjective, it is a bijection. Therefore, |O| = |N|, and the set of odd
numbers is countable. 0



Some counting rules

Theorem 6. Consider a compound experiment consisting of two sub-experiments, Fxperiment A and
Ezxperiment B. Suppose that Experiment A has a possible outcomes, and for each of those outcomes
FExperiment B has b possible outcomes. Then the compound experiment has ab possible outcomes.

Example 8. A Pizza Shop offers pizzas with 4 different types of crust and a choice of 15
toppings. How many different one-topping pizzas can be made at the shop?

Theorem 7 (Sampling with replacement). Consider n objects and making k choices from them, one
at a time with replacement (i.e., choosing a certain object does not preclude it from being chosen
again). Then there are n* possible outcomes.

Example 9. How many license plates can you make out of three letters followed by three
numerical digits?

Theorem 8 (Sampling without replacement). Consider n objects and making k choices from them,
one at a time without replacement (i.e., choosing a certain object precludes it from being chosen
again). Then there are n(n — 1)...(n — k + 1) possible outcomes, for k < n (and 0 possibilities for
k>n).

Example 10. How many license plates can you make out of three different letters followed
by three different numerical digits?

Example 11. (Permutations and factorials) A permutation of 1,2,...,n is an arrangement
of them in some order, e.g., 3,5,1,2,4 is a permutation of 1,2,3,4,5, i.e., order matters.
For example, there are n! ways in which n people can line up for ice cream. (Recall that
n!=n(n—1)(n —2)...1 for any positive integer n, and 0! = 1.)

Example 12. Consider a group of four people.
(a) How many ways are there to choose a two-person committee?
(b) How many ways are there to break the people into two teams of two?

Definition 17 (Binomial Coefficient). For any nonnegative integers k and n, the binomial coefficient
(Z), read as “n choose k”, is the number of subsets of size k for a set of size n. Precisely,

(1) = mm

Example 13. In a club with n people, there are n(n—1)(n—2) ways to choose a president, vice
president, and treasurer, and there are (g) ways to choose 3 positions without predetermined
titles.

Choosing vs. Arranging in Counting

In combinatorics, a crucial distinction is between choosing (combinations) and arranging (permuta-
tions).



Definition 18 (Choosing). Choosing k objects from n without regard to order is called a combina-
tion. The number of ways is

n\ n!

k) kl(n—k)

Definition 19 (Arranging). Arranging k objects selected from n in a specific order is called a
permutation. The number of ways is

n!
(n— k)

The key difference is that permutations treat order as important, while combinations do not.

P(n,k) =

Choosing (Combinations) Arranging (Permutations)

Order ignored Order matters
n !
(k) ways add order P(’ﬂ, k) = ﬁ ways

Example 14. (choosing): Selecting 3 students from a class of 10 to form a committee. The
set {A, B,C} is the same as {C, B, A}.
10
= 120.
(5)

Example 15. (arranging): Selecting 3 students from 10 to be president, vice-president, and
secretary. Now {A, B, C'} arranged as (A, B, C) differs from (C, B, A).

P(10,3) = 720.

Pascal’s Triangle and the Binomial Theorem

Pascal’s Triangle. The binomial coefficients (Z) can be arranged in Pascal’s Triangle. Each entry
is the sum of the two directly above it:

=G (") rsrsn

Binomial Theorem. For any integer n > 0,

n n -
(x+y)" = (kz) "Ry
k=

[e=]



Example. Expand (z + y)*:

o= (s (s Qs (s (-

(z+y)t =12 + 423y + 622> + day® + 1 - ¢,

Set theory related results:

Theorem 9. For any two sets A and B and universal set Q. We have
1. 0 < |Al < 9.
2. |[AUB| =|A|+|B| - |ANB].
3. Al + Al = 19|, Ac=Q\ A.
4. If AC B then |A| < |B].

Proof. Throughout we use the notation |S| for the (finite) number of elements of a set S.

(1) Nonnegativity and upper bound. By definition, the cardinality | A| is the number of elements
of A. The smallest possible number of elements is 0 (attained by the empty set &), so |A| > 0. Since

every element of A is also an element of 2, A cannot have more elements than €, hence |A| < |Q].
Thus 0 < |A] < |Q].

(2) Inclusion—exclusion formula. Decompose the union A U B into three disjoint regions:
A\ B, AN B, B\ A.

Venn diagram and labeled regions.

A U B partitioned into three disjoint regions

These three sets are pairwise disjoint and their union equals A U B. Let
a:=|A\ B, c:=|ANB|, b:=|B\ Al

Then
|A|=|A\B|+|ANB|=a+c,
Bl = |B\A|+[ANB[=b+c,

and
|[AUB|=|A\B|+|ANB|+|B\Al=a+c+b.

11



Adding the two expressions for |A| and |B| gives
|A|+ |B|=(a+c¢)+ (b+¢c)=a+ b+ 2c.
Comparing with |AU B| = a + b + ¢ we obtain

|AUB| = |A|+ |B|—|ANB|.

(3) Complementary partition. By definition A° = Q\ A is the set of all elements of {2 that are
not in A. The sets A and A¢ are disjoint and their union is the whole universe:

ANA° =g, AUAC=Q.

Diagram for complement.

AC

Disjoint union: 2 = AU A¢

Hence
Q] = [AU A% = [A] + |A°]
because the union is a disjoint union. This proves |A| 4+ |A¢| = |€].

(4) Monotonicity: A C B = |A| < |B|. Assume A C B. Then we can write B as the disjoint
union

B=AU(B\A),

where A and B\ A are disjoint. Taking cardinalities and using additivity over disjoint unions,
B = [Al+ B\ Al

Since |B\ A| > 0, it follows that |B| > |A|, as required. O
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