

MTL108

Probability function (measure)

Rahul Singh

Definition 1 (Algebra or field). An algebra on a non-empty set Ω is a collection \mathcal{C} of subsets of Ω satisfying:

1. $\emptyset \in \mathcal{C}$ and $\Omega \in \mathcal{C}$.
2. If $A \in \mathcal{C}$, then $A^c \in \mathcal{C}$ (closed under complementation).
3. If $A_1, A_2, \dots, A_n \in \mathcal{C}$, then $A_1 \cup A_2 \cup \dots \cup A_n \in \mathcal{C}$ (closed under finite unions).

Definition 2 (σ -algebra (field)). A σ -algebra on a non-empty set Ω is a collection \mathcal{C} of subsets of Ω satisfying:

1. $\emptyset \in \mathcal{C}$ and $\Omega \in \mathcal{C}$.
2. If $A \in \mathcal{C}$, then $A^c \in \mathcal{C}$ (closed under complementation).
3. If $\{A_n\}_{n=1}^{\infty} \subseteq \mathcal{C}$, then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{C}$ (closed under countable unions).

Definition 3. A σ -algebra on a sample space is also known as a collection of events.

Example 1. Let $\Omega = \mathbb{N} = \{1, 2, 3, \dots\}$. We define a collection of subsets \mathcal{F} as

$$\mathcal{F} = \{A \subseteq \mathbb{N} : A \text{ is finite or } A^c \text{ is finite}\}$$

Sets whose complements are finite are often called **cofinite** sets.

Why \mathcal{F} is a Field

A collection \mathcal{F} is a field if it satisfies three properties:

- **Non-emptiness:** \emptyset is finite, so $\emptyset \in \mathcal{F}$.
- **Closure under Complements:** If $A \in \mathcal{F}$, then by definition either A is finite (making A^c cofinite) or A^c is finite. In either case, $A^c \in \mathcal{F}$.
- **Closure under Finite Unions:** If $A, B \in \mathcal{F}$, their union $A \cup B$ is in \mathcal{F} .
 - If both A and B are finite, $A \cup B$ is finite.
 - If at least one (say A) is cofinite, then $(A \cup B)^c = A^c \cap B^c$. Since A^c is finite, the intersection $A^c \cap B^c$ must be finite, making $A \cup B$ cofinite.

Why \mathcal{F} is NOT a σ -field

To be a σ -field, \mathcal{F} must be closed under **countable** unions. Consider the sequence of singleton sets:

$$A_n = \{2n\} \quad \text{for } n = 1, 2, 3, \dots$$

Each $A_n \in \mathcal{F}$ because every singleton set is finite. Now, consider the countable union:

$$A = \bigcup_{n=1}^{\infty} A_n = \{2, 4, 6, \dots\}$$

The set A (the set of all even numbers) is **infinite**. Its complement, $A^c = \{1, 3, 5, \dots\}$ (the set of all odd numbers), is also **infinite**.

Since neither A nor A^c is finite, $A \notin \mathcal{F}$. Thus, \mathcal{F} is not closed under countable unions and is therefore not a σ -field.

Definition 4 (Probability function /measure). Let Ω be a non-empty set and \mathcal{C} be a σ -algebra on Ω . A probability space a triplet $(\Omega, \mathcal{C}, \mathbb{P})$, where function $\mathbb{P} : \mathcal{C} \rightarrow [0, 1]$ satisfies the following axioms:

1. $\mathbb{P}(\Omega) = 1$ and $\mathbb{P}(\emptyset) = 0$
2. If A_1, A_2, \dots are disjoint events, that is, $A_i \cap A_j = \emptyset$ for $i \neq j$, then

$$\mathbb{P}(A_1 \cup A_2 \cup \dots) = \sum_{k \geq 1} \mathbb{P}(A_k)$$

A probability space is a mathematical model for random phenomena, defined as a triple (Ω, \mathcal{C}, P) , where Ω is the sample space (all possible outcomes), \mathcal{C} is a σ -algebra of events (subsets of Ω), and $P : \mathcal{C} \rightarrow [0, 1]$ is a probability measure satisfying $P(\emptyset) = 0$, $P(\Omega) = 1$, and countable additivity for disjoint events.

Remark 1. The elements of \mathcal{C} are events in a context. The function \mathbb{P} takes an event $A \subset \omega$ as input and returns $\mathbb{P}(A)$, a real number between 0 and 1, as output.

Remark 2. Probability measure extends probability beyond equally likely notion.

Remark 3. In probability theory, the fair coin toss and six-sided die roll exemplify discrete uniform distributions on finite sample spaces. The coin assigns equal probability $1/2$ to heads or tails, modeling binary decisions, while the die distributes $1/6$ across outcomes $\{1, 2, 3, 4, 5, 6\}$, illustrating equiprobable events. Both underscore the importance of well-defined probability spaces for rigorous statistical inference.

Remark 4 (Axioms of probability). The defining properties of a probability measure are usually referred to as the three axioms of probability, these are:

Axiom 1 (Non-negativity): $\mathbb{P}(A) \geq 0$

Axiom 2 (Normalization): $\mathbb{P}(\Omega) = 1$.

Axiom 3 (Countable Additivity): For a collection of pairwise disjoint events $\{A_i\}_{i=1}^{\infty} \subseteq \mathcal{C}$ (i.e., $A_i \cap A_j = \emptyset$ for $i \neq j$),

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mathbb{P}(A_i).$$

Example 2. Fair Coin Toss: $\Omega = \{H, T\}$ (heads or tails). $\mathcal{C} = \{\emptyset, \{H\}, \{T\}, \{H, T\}\}$ (power set, a σ -algebra). $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\{H\}) = P(\{T\}) = \frac{1}{2}$, $\mathbb{P}(\{H, T\}) = 1$. This models equal chance for heads or tails.

Example 3. Fair Six-Sided Die Roll: $\Omega = \{1, 2, 3, 4, 5, 6\}$. $\mathcal{C} = 2^{\Omega}$ (the power set: all $2^6 = 64$ subsets of Ω , forming a σ -algebra; that is,

$$2^{\Omega} = \left\{ \emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 5\}, \{1, 6\}, \{2, 3\}, \{2, 4\}, \{2, 5\}, \{2, 6\}, \{3, 4\}, \{3, 5\}, \{3, 6\}, \{4, 5\}, \{4, 6\}, \{5, 6\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 2, 5\}, \{1, 2, 6\}, \{1, 3, 4\}, \{1, 3, 5\}, \{1, 3, 6\}, \{1, 4, 5\}, \{1, 4, 6\}, \{1, 5, 6\}, \{2, 3, 4\}, \{2, 3, 5\}, \{2, 3, 6\}, \{2, 4, 5\}, \{2, 4, 6\}, \{2, 5, 6\}, \{3, 4, 5\}, \{3, 4, 6\}, \{3, 5, 6\}, \{4, 5, 6\}, \{1, 2, 3, 4\}, \{1, 2, 3, 5\}, \{1, 2, 3, 6\}, \{1, 2, 4, 5\}, \{1, 2, 4, 6\}, \{1, 2, 5, 6\}, \{1, 3, 4, 5\}, \{1, 3, 4, 6\}, \{1, 3, 5, 6\}, \{1, 4, 5, 6\}, \{2, 3, 4, 5\}, \{2, 3, 4, 6\}, \{2, 3, 5, 6\}, \{2, 4, 5, 6\}, \{3, 4, 5, 6\}, \{1, 2, 3, 4, 5\}, \{1, 2, 3, 4, 6\}, \{1, 2, 3, 5, 6\}, \{1, 2, 4, 5, 6\}, \{1, 3, 4, 5, 6\}, \{2, 3, 4, 5, 6\}, \{1, 2, 3, 4, 5, 6\} \right\}$$

For $\mathbb{P}(\{k\}) = \frac{1}{6}$ for each $k \in \Omega$; for event $A \subseteq \Omega$, $\mathbb{P}(A) = \frac{|A|}{6}$. E.g., probability of even number: $\mathbb{P}(\{2, 4, 6\}) = \frac{3}{6} = \frac{1}{2}$.

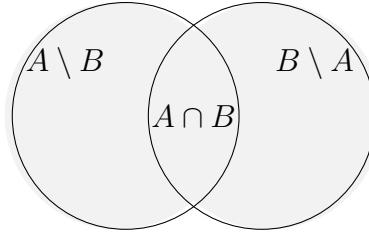
Properties

Theorem 1. For any two events A and B and sample space Ω . We have

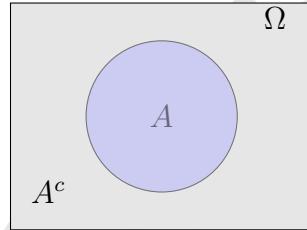
1. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$.
2. $\mathbb{P}(A) + \mathbb{P}(A^c) = 1$, $A^c = \Omega \setminus A$.
3. If $A \subseteq B$ then $\mathbb{P}(A) \leq \mathbb{P}(B)$.
4. $0 \leq \mathbb{P}(A) \leq 1$.
5. $\mathbb{P}(A \cup B) \leq \mathbb{P}(A) + \mathbb{P}(B)$

Proof. Let $(\Omega, \mathcal{C}, \mathbb{P})$ be a probability space, where Ω is the sample space, \mathcal{C} is a σ -algebra, and $\mathbb{P} : \mathcal{C} \rightarrow [0, 1]$ is a probability measure.

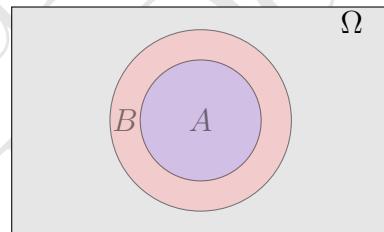
1. We can express $A \cup B = A \cup (B \setminus A)$, where A and $B \setminus A = B \cap A^c$ are disjoint. By the countable additivity axiom, $\mathbb{P}(A \cup (B \setminus A)) = \mathbb{P}(A) + \mathbb{P}(B \setminus A)$. Now, $B = (B \cap A) \cup (B \cap A^c)$, and since $B \cap A$ and $B \cap A^c$ are disjoint, $\mathbb{P}(B) = \mathbb{P}(B \cap A) + \mathbb{P}(B \cap A^c)$. Thus, $\mathbb{P}(B \setminus A) = \mathbb{P}(B \cap A^c) = \mathbb{P}(B) - \mathbb{P}(A \cap B)$. Therefore, $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$.



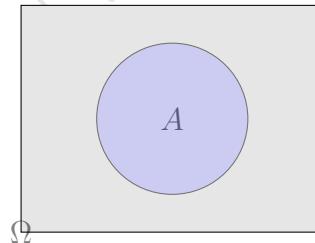
2. Since $A \cup A^c = \Omega$ and $A \cap A^c = \emptyset$, the events A and A^c are disjoint. By the countable additivity axiom, $\mathbb{P}(A \cup A^c) = \mathbb{P}(A) + \mathbb{P}(A^c)$. Since $\mathbb{P}(\Omega) = 1$, we have $\mathbb{P}(A) + \mathbb{P}(A^c) = 1$.



3. If $A \subseteq B$, then $B = A \cup (B \setminus A)$, where A and $B \setminus A$ are disjoint. By countable additivity, $\mathbb{P}(B) = \mathbb{P}(A) + \mathbb{P}(B \setminus A)$. Since $\mathbb{P}(B \setminus A) \geq 0$, it follows that $\mathbb{P}(B) \geq \mathbb{P}(A)$.



4. Since \mathbb{P} is a probability measure, by definition, for any event $A \in \mathcal{C}$, $\mathbb{P}(A) \geq 0$. Also, $\mathbb{P}(\Omega) = 1$, and since $A \subseteq \Omega$, $\mathbb{P}(A) \leq \mathbb{P}(\Omega) = 1$ by monotonicity (see part 3). Thus, $0 \leq \mathbb{P}(A) \leq 1$.

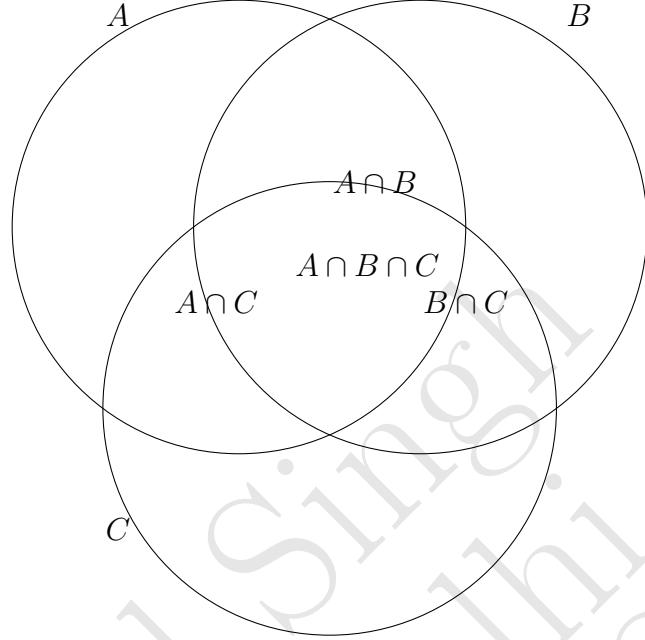


5. Follows from part 2 and non-negativity. □

Theorem 2. For any three events A , B and C ,

$$\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cap B) - \mathbb{P}(A \cap C) - \mathbb{P}(B \cap C) + \mathbb{P}(A \cap B \cap C). \quad (1)$$

Proof. Consider the union $A \cup B \cup C$. The naive sum $\mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C)$ counts the probabilities of each event, but overcounts the intersections. A Venn diagram (see below) shows three circles representing A , B , and C , with overlapping regions.

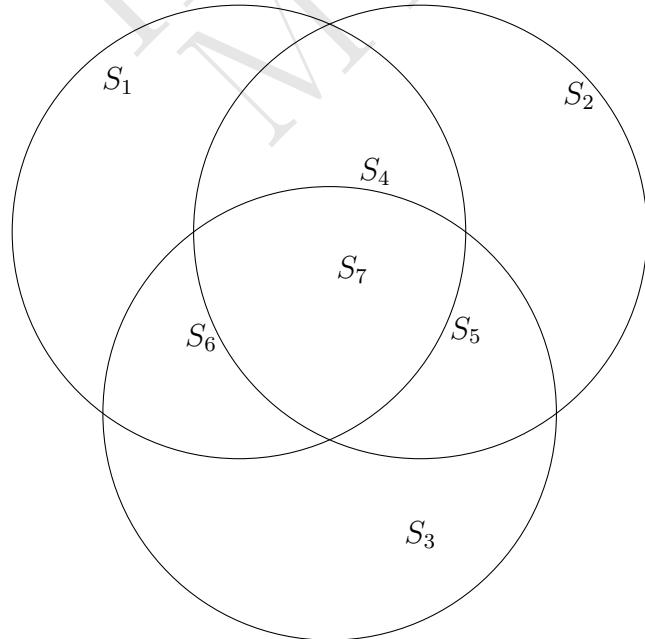


The pairwise intersections $A \cap B$, $A \cap C$, and $B \cap C$ are subtracted to correct double-counting. However, the triple intersection $A \cap B \cap C$ (central region) is subtracted thrice (once per pair) and must be added back once. Thus:

$$\mathbb{P}(A \cup B \cup C) = [\mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C)] - [\mathbb{P}(A \cap B) + \mathbb{P}(A \cap C) + \mathbb{P}(B \cap C)] + \mathbb{P}(A \cap B \cap C).$$

□

Aliter: Decompose $A \cup B \cup C$ into disjoint regions: $S_1 = A \setminus (B \cup C)$, $S_2 = B \setminus (A \cup C)$, $S_3 = C \setminus (A \cup B)$, $S_4 = (A \cap B) \setminus C$, $S_5 = (A \cap C) \setminus B$, $S_6 = (B \cap C) \setminus A$, and $S_7 = A \cap B \cap C$. The representation, via, Venn diagram, is as follows:



Note that sets $S_1, S_2, S_3, S_4, S_5, S_6, S_7$ are disjoint, so we have

$$\begin{aligned}
\mathbb{P}(A \cup B \cup C) &= \mathbb{P}(S_1 \cup S_2 \cup S_3 \cup S_4 \cup S_5 \cup S_6 \cup S_7) = \mathbb{P}(S_1) + \mathbb{P}(S_2) + \mathbb{P}(S_3) + \dots + \mathbb{P}(S_7) \\
\mathbb{P}(A) &= \mathbb{P}(S_1 \cup S_4 \cup S_6 \cup S_7) = \mathbb{P}(S_1) + \mathbb{P}(S_4) + \mathbb{P}(S_6) + \mathbb{P}(S_7) \\
\mathbb{P}(B) &= \mathbb{P}(S_2 \cup S_4 \cup S_5 \cup S_7) = \mathbb{P}(S_2) + \mathbb{P}(S_4) + \mathbb{P}(S_5) + \mathbb{P}(S_7) \\
\mathbb{P}(C) &= \mathbb{P}(S_3 \cup S_5 \cup S_6 \cup S_7) = \mathbb{P}(S_3) + \mathbb{P}(S_5) + \mathbb{P}(S_6) + \mathbb{P}(S_7) \\
\mathbb{P}(A \cap B) &= \mathbb{P}(S_4 \cup S_7) = \mathbb{P}(S_4) + \mathbb{P}(S_7) \\
\mathbb{P}(A \cap C) &= \mathbb{P}(S_6 \cup S_7) = \mathbb{P}(S_6) + \mathbb{P}(S_7) \\
\mathbb{P}(B \cap C) &= \mathbb{P}(S_5 \cup S_7) = \mathbb{P}(S_5) + \mathbb{P}(S_7) \\
\mathbb{P}(A \cap B \cap C) &= \mathbb{P}(S_7).
\end{aligned}$$

So, the RHS of (1)

$$\begin{aligned}
&\mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cap B) - \mathbb{P}(A \cap C) - \mathbb{P}(B \cap C) + \mathbb{P}(A \cap B \cap C) \\
&= \mathbb{P}(S_1) + \mathbb{P}(S_4) + \mathbb{P}(S_6) + \mathbb{P}(S_7) + \mathbb{P}(S_2) + \mathbb{P}(S_4) + \mathbb{P}(S_5) + \mathbb{P}(S_7) + \mathbb{P}(S_3) + \mathbb{P}(S_5) + \mathbb{P}(S_6) + \mathbb{P}(S_7) \\
&\quad - \left(\mathbb{P}(S_4) + \mathbb{P}(S_7) \right) - \left(\mathbb{P}(S_6) + \mathbb{P}(S_7) \right) - \left(\mathbb{P}(S_5) + \mathbb{P}(S_7) \right) + \mathbb{P}(S_7) \\
&= \mathbb{P}(S_1) + \mathbb{P}(S_2) + \mathbb{P}(S_3) + \mathbb{P}(S_4) + \mathbb{P}(S_5) + \mathbb{P}(S_6) + \mathbb{P}(S_7) \\
&= \mathbb{P}(A \cup B \cup C).
\end{aligned}$$

Theorem 3 (Total probability law). *Let $\{A_1, A_2, \dots, A_n\} \subset \mathcal{C}$ be a partition of Ω , that is, $A_1 \cup A_2 \cup \dots \cup A_n = \Omega$ and $A_i \cap A_j = \emptyset$. Then, for any event B ,*

$$\mathbb{P}(B) = \mathbb{P}(B \cap A_1) + \mathbb{P}(B \cap A_2) + \dots + \mathbb{P}(B \cap A_n).$$

Proof. Since $\{A_1, A_2, \dots, A_n\}$ is a partition, the events $B \cap A_i$ are disjoint (because $A_i \cap A_j = \emptyset$ for $i \neq j$ implies $(B \cap A_i) \cap (B \cap A_j) = B \cap (A_i \cap A_j) = B \cap \emptyset = \emptyset$). Their union covers B :

$$\bigcup_{i=1}^n (B \cap A_i) = B \cap \left(\bigcup_{i=1}^n A_i \right) = B \cap \Omega = B,$$

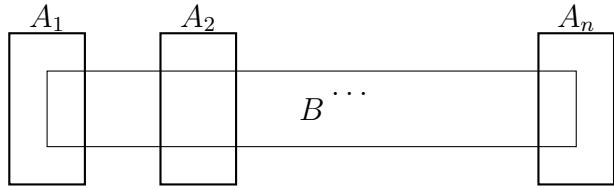
as $\bigcup_{i=1}^n A_i = \Omega$. By the countable additivity axiom, for disjoint events:

$$P \left(\bigcup_{i=1}^n (B \cap A_i) \right) = \sum_{i=1}^n P(B \cap A_i).$$

Since the union is B , we have:

$$P(B) = \sum_{i=1}^n P(B \cap A_i).$$

A Venn diagram (adapted for partitions) shows B as the region across disjoint A_i (see below). Each $B \cap A_i$ is the part of B within A_i , and their sum equals $P(B)$.



This visualizes B as the union of $B \cap A_i$, supporting the additivity. \square

References

- [1] Blitzstein, J. K., & Hwang, J. (2019). *Introduction to probability*. Chapman and Hall/CRC.

Disclaimer

This lecture note is prepared solely for teaching and academic purposes. Some parts of the material, including definitions, examples, and explanations, have been adapted or reproduced from the references. These notes are not intended for commercial distribution or publication, and all rights remain with the respective copyright holders.