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Probability function (measure)

Rahul Singh

Definition 1 (Algebra or field). An algebra on a non-empty set Ω is a collection C of subsets of Ω
satisfying:

1. ∅ ∈ C and Ω ∈ C.

2. If A ∈ C, then Ac ∈ C (closed under complementation).

3. If A1, A2, . . . , An ∈ C, then A1 ∪ A2 ∪ . . . ∪ An ∈ C (closed under finite unions).

Definition 2 (σ-algebra (field)). A σ-algebra on a non-empty set Ω is a collection C of subsets of
Ω satisfying:

1. ∅ ∈ C and Ω ∈ C.

2. If A ∈ C, then Ac ∈ C (closed under complementation).

3. If {An}∞n=1 ⊆ C, then
⋃∞

n=1 An ∈ C (closed under countable unions).

Definition 3. A σ-algebra on a sample space is also known as a collection of events.

Example 1. Let Ω = N = {1, 2, 3, . . . }. We define a collection of subsets F as

F = {A ⊆ N : A is finite or Ac is finite}

Sets whose complements are finite are often called cofinite sets.

Why F is a Field

A collection F is a field if it satisfies three properties:

• Non-emptiness: ∅ is finite, so ∅ ∈ F .

• Closure under Complements: If A ∈ F , then by definition either A is finite (making
Ac cofinite) or Ac is finite. In either case, Ac ∈ F .

• Closure under Finite Unions: If A,B ∈ F , their union A ∪B is in F .

– If both A and B are finite, A ∪B is finite.

– If at least one (say A) is cofinite, then (A ∪ B)c = Ac ∩ Bc. Since Ac is finite, the
intersection Ac ∩Bc must be finite, making A ∪B cofinite.
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Why F is NOT a σ-field

To be a σ-field, F must be closed under countable unions. Consider the sequence of singleton
sets:

An = {2n} for n = 1, 2, 3, . . .

Each An ∈ F because every singleton set is finite. Now, consider the countable union:

A =
∞⋃
n=1

An = {2, 4, 6, . . . }

The set A (the set of all even numbers) is infinite. Its complement, Ac = {1, 3, 5, . . . } (the
set of all odd numbers), is also infinite.
Since neither A nor Ac is finite, A /∈ F . Thus, F is not closed under countable unions and is
therefore not a σ-field.

Definition 4 (Probability function /measure). Let Ω be a non-empty set and C be a σ-algebra
on Ω. A probability space a triplet (Ω, C,P), where function P : C → [0, 1] satisfies the following
axioms:

1. P(Ω) = 1 and P(∅) = 0

2. If A1, A2, . . . are disjoint events, that is, Ai ∩ Aj = ∅ for i ̸= j, then

P(A1 ∪ A2 ∪ . . .) =
∑
k≥1

P(Ak)

A probability space is a mathematical model for random phenomena, defined as a triple (Ω, C, P ),
where Ω is the sample space (all possible outcomes), C is a σ-algebra of events (subsets of Ω), and
P : C → [0, 1] is a probability measure satisfying P (∅) = 0, P (Ω) = 1, and countable additivity for
disjoint events.

Remark 1. The elements of C are events in a context. The function P takes an event A ⊂ ω as
input and returns P(A), a real number between 0 and 1, as output.

Remark 2. Probability measure extends probability beyond equally likely notion.

Remark 3. In probability theory, the fair coin toss and six-sided die roll exemplify discrete uniform
distributions on finite sample spaces. The coin assigns equal probability 1/2 to heads or tails,
modeling binary decisions, while the die distributes 1/6 across outcomes {1, 2, 3, 4, 5, 6}, illustrating
equiprobable events. Both underscore the importance of well-defined probability spaces for rigorous
statistical inference.

Remark 4 (Axioms of probability). The defining properties of a probability measure are usually
referred to as the three axioms of probability, these are:

Axiom 1 (Non-negativity): P(A) ≥ 0

Axiom 2 (Normalization): P(Ω) = 1.
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Axiom 3 (Countable Additivity): For a collection of pairwise disjoint events {Ai}∞i=1 ⊆ C (i.e.,
Ai ∩ Aj = ∅ for i ̸= j),

P

(
∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai).

Example 2. Fair Coin Toss: Ω = {H,T} (heads or tails). C = {∅, {H}, {T}, {H,T}} (power
set, a σ-algebra). P(∅) = 0, P({H}) = P ({T}) = 1

2
, P({H,T}) = 1. This models equal

chance for heads or tails.

Example 3. Fair Six-Sided Die Roll: Ω = {1, 2, 3, 4, 5, 6}. C = 2Ω (the power set: all 26 = 64
subsets of Ω, forming a σ-algebra; that is,

2Ω =



∅, {1}, {2}, {3}, {4}, {5}, {6},
{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {2, 3}, {2, 4}, {2, 5}, {2, 6}, {3, 4}, {3, 5}, {3, 6},

{4, 5}, {4, 6}, {5, 6},
{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 3, 4}, {1, 3, 5}, {1, 3, 6}, {1, 4, 5}, {1, 4, 6},
{1, 5, 6}, {2, 3, 4}, {2, 3, 5}, {2, 3, 6}, {2, 4, 5}, {2, 4, 6}, {2, 5, 6}, {3, 4, 5}, {3, 4, 6},

{3, 5, 6}, {4, 5, 6},
{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 6}, {1, 2, 4, 5}, {1, 2, 4, 6}, {1, 2, 5, 6}, {1, 3, 4, 5},

{1, 3, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {2, 3, 4, 5}, {2, 3, 4, 6}, {2, 3, 5, 6},
{2, 4, 5, 6}, {3, 4, 5, 6},

{1, 2, 3, 4, 5}, {1, 2, 3, 4, 6}, {1, 2, 3, 5, 6}, {1, 2, 4, 5, 6}, {1, 3, 4, 5, 6}, {2, 3, 4, 5, 6},
{1, 2, 3, 4, 5, 6}


For P({k}) = 1

6
for each k ∈ Ω; for event A ⊆ Ω, P(A) = |A|

6
. E.g., probability of even

number: P({2, 4, 6}) = 3
6
= 1

2
.

Properties

Theorem 1. For any two events A and B and sample space Ω. We have

1. P(A ∪B) = P(A) + P(B)− P(A ∩B).

2. P(A) + P(Ac) = 1, Ac = Ω \ A.

3. If A ⊆ B then P(A) ≤ P(B).

4. 0 ≤ P(A) ≤ 1.

5. P(A ∪B) ≤ P(A) + P(B)

Proof. Let (Ω, C,P) be a probability space, where Ω is the sample space, C is a σ-algebra, and
P : C → [0, 1] is a probability measure.

1. We can express A ∪ B = A ∪ (B \ A), where A and B \ A = B ∩ Ac are disjoint. By the
countable additivity axiom, P(A∪ (B \A)) = P(A)+P(B \A). Now, B = (B∩A)∪ (B∩Ac),
and since B ∩ A and B ∩ Ac are disjoint, P(B) = P(B ∩ A) + P(B ∩ Ac). Thus, P(B \ A) =
P(B ∩ Ac) = P(B)− P(A ∩B). Therefore, P(A ∪B) = P(A) + P(B)− P(A ∩B).
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A \B

A ∩B

B \ A

2. Since A ∪ Ac = Ω and A ∩ Ac = ∅, the events A and Ac are disjoint. By the countable
additivity axiom, P(A ∪ Ac) = P(A) + P(Ac). Since P(Ω) = 1, we have P(A) + P(Ac) = 1.

Ω

A

Ac

3. If A ⊆ B, then B = A ∪ (B \ A), where A and B \ A are disjoint. By countable additivity,
P(B) = P(A) + P(B \ A). Since P(B \ A) ≥ 0, it follows that P(B) ≥ P(A).

Ω

B A

4. Since P is a probability measure, by definition, for any event A ∈ C, P(A) ≥ 0. Also, P(Ω) = 1,
and since A ⊆ Ω, P(A) ≤ P(Ω) = 1 by monotonicity (see part 3). Thus, 0 ≤ P(A) ≤ 1.

A

Ω

5. Follows from part 2 and non-negativity.

□

Theorem 2. For any three events A, B and C,

P(A ∪B ∪ C) = P(A) + P(B) + P(C)− P(A ∩B)− P(A ∩ C)− P(B ∩ C) + P(A ∩B ∩ C). (1)
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Proof. Consider the union A∪B∪C. The naive sum P(A)+P(B)+P(C) counts the probabilities
of each event, but overcounts the intersections. A Venn diagram (see below) shows three circles
representing A, B, and C, with overlapping regions.

A B

C

A ∩B ∩ C

A ∩B

A ∩ C B ∩ C

The pairwise intersections A ∩ B, A ∩ C, and B ∩ C are subtracted to correct double-counting.
However, the triple intersection A∩B ∩C (central region) is subtracted thrice (once per pair) and
must be added back once. Thus:

P(A ∪B ∪ C) = [P(A) + P(B) + P(C)]− [P(A ∩B) + P(A ∩ C) + P(B ∩ C)] + P(A ∩B ∩ C).

□
Aliter: Decompose A ∪ B ∪ C into disjoint regions: S1 = A \ (B ∪ C), S2 = B \ (A ∪ C),
S3 = C \ (A ∪ B), S4 = (A ∩ B) \ C, S5 = (A ∩ C) \ B, S6 = (B ∩ C) \ A, and S7 = A ∩ B ∩ C.
The representation, via, Venn diagram, is as follows:

S1 S2

S3

S7

S4

S6
S5
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Note that sets S1, S2, S3, S4, S5, S6, S7 are disjoint, so we have

P(A ∪B ∪ C) = P(S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 ∪ S6 ∪ S7) = P(S1) + P(S2) + P(S3) + . . .+ P(S7)

P(A) = P(S1 ∪ S4 ∪ S6 ∪ S7) = P(S1) + P(S4) + P(S6) + P(S7)

P(B) = P(S2 ∪ S4 ∪ S5 ∪ S7) = P(S2) + P(S4) + P(S5) + P(S7)

P(C) = P(S3 ∪ S5 ∪ S6 ∪ S7) = P(S3) + P(S5) + P(S6) + P(S7)

P(A ∩B) = P(S4 ∪ S7) = P(S4) + P(S7)

P(A ∩ C) = P(S6 ∪ S7) = P(S6) + P(S7)

P(B ∩ C) = P(S5 ∪ S7) = P(S5) + P(S7)

P(A ∩B ∩ C) = P(S7).

So, the RHS of (1)

P(A) + P(B) + P(C)− P(A ∩B)− P(A ∩ C)− P(B ∩ C) + P(A ∩B ∩ C)

= P(S1) + P(S4) + P(S6) + P(S7) + P(S2) + P(S4) + P(S5) + P(S7) + P(S3) + P(S5) + P(S6) + P(S7)

−
(
P(S4) + P(S7)

)
−
(
P(S6) + P(S7)

)
−
(
P(S5) + P(S7)

)
+ P(S7)

= P(S1) + P(S2) + P(S3) + P(S4) + P(S5) + P(S6) + P(S7)

= P(A ∪B ∪ C).

Theorem 3 (Total probability law). Let {A1, A2, . . . , An} ⊂ C be a partition of Ω, that is, A1 ∪
A2 ∪ . . . ∪ An = Ω and Ai ∩ Aj = ∅. Then, for any event B,

P(B) = P(B ∩ A1) + P(B ∩ A2) + . . .+ P(B ∩ An).

Proof. Since {A1, A2, . . . , An} is a partition, the events B ∩Ai are disjoint (because Ai ∩Aj = ∅
for i ̸= j implies (B ∩ Ai) ∩ (B ∩ Aj) = B ∩ (Ai ∩ Aj) = B ∩ ∅ = ∅). Their union covers B:

n⋃
i=1

(B ∩ Ai) = B ∩

(
n⋃

i=1

Ai

)
= B ∩ Ω = B,

as
⋃n

i=1Ai = Ω. By the countable additivity axiom, for disjoint events:

P

(
n⋃

i=1

(B ∩ Ai)

)
=

n∑
i=1

P (B ∩ Ai).

Since the union is B, we have:

P (B) =
n∑

i=1

P (B ∩ Ai).

A Venn diagram (adapted for partitions) shows B as the region across disjoint Ai (see below).
Each B ∩ Ai is the part of B within Ai, and their sum equals P (B).
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B

A1 A2

. . .

An

This visualizes B as the union of B ∩ Ai, supporting the additivity. □
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Disclaimer

This lecture note is prepared solely for teaching and academic purposes. Some parts of the mate-
rial, including definitions, examples, and explanations, have been adapted or reproduced from the
references. These notes are not intended for commercial distribution or publication, and all rights
remain with the respective copyright holders.
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