CML101: Tutorial 4-Quantum Chemistry

UG Semester - I (2023-24)

Q1: The ground-state wave function of a quantum harmonic oscillator is given as,

$$
\psi_{0}(x)=\left(\frac{b}{\pi}\right)^{1 / 4} e^{-b x^{2} / 2}
$$

Show that $\Delta p_{x} \Delta x=\frac{\hbar}{2}$. Where $\Delta p_{x}=\sqrt{\left\langle p_{x}^{2}\right\rangle-\left\langle p_{x}\right\rangle^{2}}$ and $\Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}$ are the variances in p_{x} and x, respectively.

Ans:

$$
\begin{aligned}
\left\langle x^{2}\right\rangle & =\left(\frac{b}{\pi}\right)^{1 / 2} \int_{-\infty}^{\infty} x^{2} e^{-b x^{2} / 2} d x=2\left(\frac{b}{\pi}\right)^{1 / 2} \frac{1}{4 b}\left(\frac{\pi}{b}\right)^{1 / 2}=\frac{1}{2 b} \\
\langle x\rangle & =\left(\frac{b}{\pi}\right)^{1 / 2} \int_{-\infty}^{\infty} x e^{-b x^{2} / 2} d x=0 \\
\left\langle p_{x}^{2}\right\rangle & =\int_{-\infty}^{\infty} \psi_{0}(x)\left(\hbar^{2} \frac{d^{2}}{d x^{2}}\right) \psi_{0}(x) d x \\
& =-\left(\frac{b}{\pi}\right)^{1 / 2} \hbar^{2} \int_{-\infty}^{\infty} e^{-b x^{2} / 2}\left(\frac{d^{2}}{d x^{2}}\right) e^{-b x^{2} / 2} d x \\
& =-\left(\frac{b}{\pi}\right)^{1 / 2} \hbar^{2} \int_{-\infty}^{\infty} e^{-b x^{2} / 2}\left(\frac{d}{d x}\right)\left(-b x e^{-b x^{2} / 2}\right) d x \\
& =-\left(\frac{b}{\pi}\right)^{1 / 2} \hbar^{2} b \int_{-\infty}^{\infty} e^{-b x^{2} / 2}\left(b x^{2}-1\right) d x \\
& =-\left(\frac{b}{\pi}\right)^{1 / 2} \hbar^{2} b\left[\frac{1}{4}\left(\frac{\pi}{b}\right)^{1 / 2}-\frac{1}{2}\left(\frac{\pi}{b}\right)^{1 / 2}\right] \\
& =\hbar^{2} b / 2 \\
\left\langle p_{x}\right\rangle & =\int_{-\infty}^{\infty} \psi_{0}(x)\left(-i \hbar \frac{d}{d x}\right) \psi_{0}(x) d x \\
& =-\left(\frac{b}{\pi}\right)^{1 / 2}(-i \hbar)(-b) \int_{-\infty}^{\infty} x e^{-b x^{2} / 2} d x \\
& =0 \\
\Delta p_{x} & \Delta x=\left(\frac{\hbar^{2} b}{2} \frac{1}{2 b}\right)^{1 / 2}=\hbar / 2
\end{aligned}
$$

Q2: A strong absorption band of infrared radiation is observed for ${ }^{1} \mathrm{H}^{35} \mathrm{Cl}$ at 2991 cm^{-1}. (a) Calculate the force constant, k , for this molecule. (b) By what factor do you expect the frequency to shift if H is replaced by D ? Assume that the force constant does not get affected by this change.

Ans:

$$
\nu=\frac{1}{2 \pi} \sqrt{\frac{k}{\mu}}
$$

Evaluate $\mu_{H C l}=\frac{m_{H} m_{C l}}{m_{H}+m_{C l}}$

$$
m_{H}=1 \mathrm{amu}=1.0078 \times 1.66053906660 \times 10^{-27} \mathrm{~kg}
$$

$$
m_{C l}=35.5 \mathrm{amu}=35.5 \times 1.66053906660 \times 10^{-27} \mathrm{~kg}
$$

Evaluate $\mu_{D C l}$

Q3: Derive the expression for the standard deviation of the bond length of a diatomic molecule when it is in its ground state. (b) What percentage of the equilibrium bond length is this standard deviation for CO in its ground state? For CO, $\tilde{\nu}=2170 \mathrm{~cm}^{-1}$ and $\operatorname{Re}=113 \mathrm{pm}$.

Ans: (i) Heisenberg's uncertainty principle, $\Delta x \Delta p_{x}=\frac{\hbar}{2}$

$$
\Delta x=\left(\frac{\hbar}{2 m \omega}\right)^{1 / 2}
$$

where ω is the angular frequency, $\omega=2 \pi \tilde{\nu}$, and $\tilde{\nu}=\frac{1}{2 \pi} \sqrt{\frac{k}{\mu}}$
Thus,

$$
\Delta x=\left(\frac{\hbar}{4 \pi c \tilde{\nu} \mu}\right)^{1 / 2}
$$

(ii) Evaluate $\mu_{C O}=\frac{m_{H} m_{C}}{m_{C}+m_{O}}=1.139 \times 10^{-26} \mathrm{~kg}$
$\tilde{\nu}=2170 \mathrm{~cm}^{-1}$
$\% \Delta x=2.98 \%$
Q4: The wave function of the ground state of H atom is given as, $\psi_{1 s}=\frac{1}{2 \pi}\left(\frac{Z}{a_{0}}\right) e^{-Z r / a_{0}}$.
(i) Find the average distance of 1 s electron from the nucleus in the hydrogen atom.
(ii) Calculate the most probable distance (i.e., radius) at which the 1 s electron of H -like atom with atomic number Z is to be found. Show that as Z increases, this most probable distance decreases.

Ans:
(i) $\langle r\rangle=\int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2 \pi} \psi_{1 s} . r . \psi_{1 s} r^{2} d r \sin \theta d \theta d \phi=3 a_{0} / 2$
(ii) $\mathrm{P}(\mathrm{r})=\left|R_{10}(r)\right|^{2} r^{2}$
$\frac{d P(r)}{d r}=\frac{a_{0}}{Z}$

Q5: Calculate the ground state energy of the hydrogen atom in SI units and convert the result to electronvolts (eV).

$$
\begin{equation*}
E_{n}=-\frac{Z^{2}}{n^{2}} \frac{e^{2}}{8 \pi \epsilon_{0} a}=\frac{Z^{2} \mu e^{4}}{8 \epsilon_{0}^{2} n^{2} h^{2}} \tag{1}
\end{equation*}
$$

where $a=\frac{4 \pi \epsilon_{0} \hbar^{2}}{\mu e^{2}}$
[Given $m_{e}=9.109 \times 10^{-} 31 \mathrm{~kg}, e=1.602 \times 10^{-} 19 \mathrm{C}, \epsilon_{0}=8.854 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N}-\mathrm{m}^{2}$, $\left.1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}\right]$

Q6: Calculate the wavelength and frequency for the spectral line that axis from $\mathrm{n}=5$ to $\mathrm{n}=3$ transition in the H -atom. [Rydberg constant $\left(\mathrm{R}_{H}\right)=1.097373 \times 10^{7} \mathrm{~m}^{-1}$ and $\left.\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right]$

Ans:

$$
\frac{h c}{\lambda}=R_{H}\left[\frac{1}{n_{I}^{2}}-\frac{1}{n_{I}^{2} I}\right]
$$

