Q1: The gas-phase decomposition of acetic acid at 1189 K proceeds by way of two parallel reactions:
(1) $\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{CH}_{4}+\mathrm{CO}_{2} \quad \mathrm{k}_{1}=3.74 \mathrm{~s}^{-1}$
(2) $\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{CH}_{2} \mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \quad \mathrm{k}_{2}=4.65 \mathrm{~s}^{-1}$
(i) Derive an expression to calculate the concentration of the ketene $\left[\mathrm{CH}_{2} \mathrm{CO}\right]$ from the integrated rate law equations. (ii) What is the percentage yield of the ketene $\mathrm{CH}_{2} \mathrm{CO}$ obtainable at this temperature when the reaction reaches completion (almost)?
(2+1 marks)

Q2: For a composite reaction involving pre-equilibrium first step a, followed by step b, the observed rate constant $\left(k_{o b s}\right)$ is $k_{o b s}=\frac{k_{a} k_{b}}{k_{a}^{\prime}}$, where k_{a} and k_{a}^{\prime} are the rate constants associated ${ }^{a}$ with the forward and backward reactions of the step a, and k_{b} is the rate constant of the forward reaction of the second step, b. The activation energies, $E_{a}(a), \quad E_{a}^{\prime}(a)$, and $E_{a}(b)$ correspond to the barriers for the different steps (see Figure).
(i) Write down a possible mechanism of the reaction corresponding to the given potential energy profile.
(ii) Assuming that each of these rate constants has Arrhenius-like temperature dependence, express the total activation energy of the reaction in terms of the activation energies of the elementary reactions. $(0.5+1.5$ marks)

Q3: Alpha-chymotrypsin is an important enzyme that catalyses protein hydrolysis. Furthermore, it catalyses various carboxylic acid derivatives, amides, and esters. An experiment studying the hydrolysis of p-nitrophenylacetate (ester) catalyzed by α chymotrypsin has the following steps,

$$
\mathrm{E}+\mathrm{S} \stackrel{K_{s}}{\rightleftharpoons} \mathrm{E} . \mathrm{S} \xrightarrow{k_{2}} \mathrm{ES}^{\prime}+\mathrm{P}_{1} \xrightarrow{k_{3}} \mathrm{E}+\mathrm{P}_{2}
$$

where P_{1} is the p-nitrophenol, and P_{2} is an acetate. The concentration of P_{1}, follows the curve depicted on the right side Figure. As you notice in the Fig., the calculation of the concentration of P_{1} involves three constants, A, B, and b that are given as,

$$
\begin{equation*}
A=\frac{\frac{k_{2} k_{3}}{k_{2}+k_{3}}[E]_{0}[S]_{0}}{[S]_{0}+\frac{K_{S} k_{3}}{k_{2}+k_{3}}} \quad B \cong[E]_{0} \quad b \cong \frac{\left(k_{2}+k_{3}\right)[S]_{0}}{[S]_{0}+K_{S}} \tag{1}
\end{equation*}
$$

(i) At high substrate concentration, P_{1} gets produced much faster than P_{2}. These conditions will help you write down a reduced form the expression of A , and from there, calculate k_{3}. Given: the initial enzyme concentration, $[E]_{0}=1.15 \times 10^{-5} \mathrm{M}$ and $A=1.94 \times 10^{-9} \mathrm{M} \mathrm{sec}^{-1}$. (ii) If $K_{S}=1.6 \times 10^{-3} \mathrm{M}$, the substrate concentration, $[S]_{0}=5.72 \times 10^{-5} \mathrm{M}$, and $b=1.13 \times 10^{-3} \sec ^{-1}$, calculate k_{2}. (iii) What is the functional form of the curve corresponding to the variation of $\left[\mathrm{P}_{1}\right]$ with time?
($1+1+1$ marks)

Q4: The wave function of a H-like atom's electron is given as, $\psi=\frac{1}{\sqrt{\pi}}\left(\frac{Z}{a_{0}}\right)^{3 / 2} e^{-Z r / a_{0}}$. Where is the electron most likely to be found? Find out its dependence with Z.
(2 marks)

Q5: Write the Schrödinger equation of a particle of mass m with a non-zero potential $V(x)$. Determine if the momentum operator commutes with the potential energy operator. Comment on your observation. (1.5 + 0.5 marks)

Q6: A quantum system has an arbitrary potential $\mathrm{V}(\mathrm{x})$ as shown in Fig. 3. Let's assume that we have found a region $-a / 2 \leq \mathrm{x} \leq a / 2$ in which the potential is zero (marked on Fig. 3), and the potential rises immediately to infinity at the two boundaries, $-a / 2$ and $a / 2$.

For this system,
(i) Unlike the particle in 1D-box wavefunction that we discussed in the class, here the ground-state and the first excited states wave functions are, $\psi_{0}(x)=\sqrt{2 / a} \cos \frac{\pi x}{a}$ and $\psi_{1}(x)=$ $\sqrt{2 / a} \sin \frac{2 \pi x}{a}$, respectively.
(i) Why are the forms of the wavefunctions different than what we discussed in the class?
(ii) Derive an outcome if you measure ' x ' several times using the ground-state wavefunction of this system. Explain.
(2+2 marks)

Q7: The ground-state wave function of a quantum harmonic oscillator is given as,

$$
\psi_{0}(x)=\left(\frac{\alpha}{\pi}\right)^{1 / 4} e^{-\alpha x^{2} / 2}
$$

where $\alpha=\frac{m \omega}{\hbar}, \omega=2 \pi \nu$ is the angular frequency, and $\nu=\frac{1}{2 \pi} \sqrt{\frac{k}{\mu}}$
(i) What is the classically forbidden region of the ground state?
(ii) Find out the probability of finding the particle in the classically forbidden region?
[Hint: You might need an integration, $\int_{1 / \alpha}^{\infty} e^{-\beta x^{2}} d x=\frac{\sqrt{\pi}}{2} \frac{1}{\alpha}[1-\operatorname{Erf}(1)]$, and $\operatorname{Erf}(1)=0.8427$

Q8: Suppose we write a quantum particle's total wavefunction (ψ) as a linear sum of a few wavefunctions $\left(\phi_{i}\right)$ as, $\psi=\sum_{i} \alpha_{i} \phi_{i}$, where α_{i} are the coefficients. Write down the formula to calculate the expectation of Q. If each ϕ_{i} is an eigenfunction of its corresponding operator \hat{Q} with eigenvalue λ_{i}. Assuming ϕ_{i} are orthonormal, derive an expression of the expectation value of Q.
($0.5+1.5$ marks)

Q9. Calculate CFSE of $\left[\mathrm{Co}(\text { bpy })_{3}\right]^{3+}$ and $\left[\mathrm{CuCl}_{4}\right]^{2-}$ (bpy $=2,2$ - -bipyridine).

Q10. Which type of spinal is $\mathrm{ZnCr}_{2} \mathrm{O}_{4}$? Give a reason for your answer.

Q11. In an octahedral weak ligand field, categorize the following metal ions in ascending order of their ionic radii.

$$
\begin{equation*}
\mathrm{Cr}^{3+}, \mathrm{Fe}^{3+}, \mathrm{Mn}^{3+} \tag{1mark}
\end{equation*}
$$

Q12. Between two complexes, $\left[\mathrm{CrCl}_{6}\right]^{4-}$ and $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$, which one will have a more axially distorted structure? Explain your answer.
(1 mark)

Q13. The observed effective magnetic moment ($\mu_{e f f}$) of an iron(II) complex is $5.4 \mu_{B}$, which is much higher than the expected value. Explain.
(1 mark)

