	CML101: Introduction to Chemistry (Mid-sem Exam)			
Date: 15 Sept 2023	Time: 13:00 - 15:00 pm	Total Marks: 25	Questions: Q1-Q13	

Q1: The gas-phase decomposition of acetic acid at 1189 K proceeds by way of two parallel reactions:

(1) $CH_3COOH \rightarrow CH_4 + CO_2$	$k_1 = 3.74 \ s^{-1}$
(2) $CH_3COOH \rightarrow CH_2CO + H_2O$	$k_2 = 4.65 \ s^{-1}$

(i) Derive an expression to calculate the concentration of the ketene $[CH_2CO]$ from the integrated rate law equations. (ii) What is the percentage yield of the ketene CH_2CO obtainable at this temperature when the reaction reaches completion (almost)? (2+1 marks)

Q2: For a composite reaction involving pre-equilibrium first step a, followed by step b, the observed rate constant (k_{obs}) is $k_{obs} = \frac{k_a k_b}{k'_a}$, where k_a and k'_a are the rate constants associated with the forward and backward reactions of the step a, and k_b is the rate constant of the forward reaction of the second step, b. The activation energies, $E_a(a)$, $E'_a(a)$, and $E_a(b)$ correspond to the barriers for the different steps (see Figure).

(i) Write down a possible mechanism of the reaction corresponding to the given potential energy profile.

(ii) Assuming that each of these rate constants has Arrhenius-like temperature dependence, express the total activation energy of the reaction in terms of the activation energies of the elementary reactions. (0.5+1.5 marks)

Q3: Alpha-chymotrypsin is an important enzyme that catalyses protein hydrolysis. Furthermore, it catalyses various carboxylic acid derivatives, amides, and esters. An experiment studying the hydrolysis of p-nitrophenylacetate (ester) catalyzed by α chymotrypsin has the following steps,

$$E + S \stackrel{K_s}{\rightleftharpoons} E.S \stackrel{k_2}{\longrightarrow} ES' + P_1 \stackrel{k_3}{\longrightarrow} E + P_2$$

where P_1 is the p-nitrophenol, and P_2 is an acetate. The concentration of P_1 , follows the curve depicted on the right side Figure. As you notice in the Fig., the calculation of the concentration of P_1 involves three constants, A, B, and b that are given as,

$$A = \frac{\frac{k_2 k_3}{k_2 + k_3} [E]_0 [S]_0}{[S]_0 + \frac{K_S k_3}{k_2 + k_3}} \qquad B \cong [E]_0 \qquad b \cong \frac{(k_2 + k_3) [S]_0}{[S]_0 + K_S} \quad (1)$$

Reaction coordinate

(i) At high substrate concentration, P_1 gets produced much faster than P_2 . These conditions will help you write down a reduced form the expression of A, and from there, calculate k_3 . Given: the initial enzyme concentration, $[E]_0 = 1.15 \times 10^{-5}$ M and $A = 1.94 \times 10^{-9}$ M sec⁻¹. (ii) If $K_S = 1.6 \times 10^{-3}$ M, the substrate concentration, $[S]_0 = 5.72 \times 10^{-5}$ M, and $b = 1.13 \times 10^{-3} sec^{-1}$, calculate k_2 . (iii) What is the functional form of the curve corresponding to the variation of $[P_1]$ with time? (1+1+1 marks)

Q4: The wave function of a H-like atom's electron is given as, $\psi = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} e^{-Zr/a_0}$. Where is the electron most likely to be found? Find out its dependence with Z. (2 marks)

Q5: Write the Schrödinger equation of a particle of mass m with a non-zero potential V(x). Determine if the momentum operator commutes with the potential energy operator. Comment on your observation. (1.5 + 0.5 marks)

Q6: A quantum system has an arbitrary potential V(x) as shown in Fig. 3. Let's assume that we have found a region $-a/2 \le x \le a/2$ in which the potential is zero (marked on Fig. 3), and the potential rises immediately to infinity at the two boundaries, -a/2 and a/2.

For this system,

(i) Unlike the particle in 1D-box wavefunction that we discussed in the class, here the ground-state and the first excited states wave functions are, $\psi_0(x) = \sqrt{2/a} \cos \frac{\pi x}{a}$ and $\psi_1(x) = \sqrt{2/a} \sin \frac{2\pi x}{a}$, respectively.

(i) Why are the forms of the wavefunctions different than what we discussed in the class?

(ii) Derive an outcome if you measure 'x' several times using the ground-state wavefunction of this system. Explain.

(2+2 marks)

Q7: The ground-state wave function of a quantum harmonic oscillator is given as,

$$\psi_0(x) = \left(\frac{\alpha}{\pi}\right)^{1/4} e^{-\alpha x^2/2},$$

where $\alpha = \frac{m\omega}{\hbar}$, $\omega = 2\pi\nu$ is the angular frequency, and $\nu = \frac{1}{2\pi}\sqrt{\frac{k}{\mu}}$

(i) What is the classically forbidden region of the ground state?

(ii) Find out the probability of finding the particle in the classically forbidden region?

[*Hint: You might need an integration*, $\int_{1/\alpha}^{\infty} e^{-\beta x^2} dx = \frac{\sqrt{\pi}}{2} \frac{1}{\alpha} [1 - \text{Erf}(1)]$, and Erf(1) = 0.8427] (1+1 marks)

Q8: Suppose we write a quantum particle's total wavefunction (ψ) as a linear sum of a few wavefunctions (ϕ_i) as, $\psi = \sum_i \alpha_i \phi_i$, where α_i are the coefficients. Write down the formula to calculate the expectation of Q. If each ϕ_i is an eigenfunction of its corresponding operator \hat{Q} with eigenvalue λ_i . Assuming ϕ_i are orthonormal, derive an expression of the expectation value of Q. (0.5+1.5 marks)

Q9. Calculate CFSE of
$$[Co(bpy)_3]^{3+}$$
 and $[CuCl_4]^{2-}$ (bpy = 2,2'-bipyridine). (1 mark)

Q10. Which type of spinal is $ZnCr_2O_4$? Give a reason for your answer. (1 mark)

Q11. In an octahedral weak ligand field, categorize the following metal ions in ascending order of their ionic radii.

$$Cr^{3+}, Fe^{3+}, Mn^{3+}$$
 (1 mark)

Q12. Between two complexes, $[CrCl_6]^{4-}$ and $[Cr(NH_3)_6]^{2+}$, which one will have a more axially distorted structure? Explain your answer. (1 mark)

Q13. The observed effective magnetic moment (μ_{eff}) of an iron(II) complex is 5.4 μ_B , which is much higher than the expected value. Explain. (1 mark)

